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Abstract. The average capital growth rate across firms declines sharply during a
recession, and recovers only slowly. We provide a micro-founded explanation for this
and several new stylized facts of investment asymmetry. Our investment model features
various degrees of reversibility, cyclical macroeconomic shocks, and uncertainty about the
state of the economy. Model simulations replicate strikingly different empirical patterns
of capital growth rates at the aggregate and firm levels, featuring no slope asymmetry
and a positive level asymmetry at the firm level, negative slope and level asymmetries at
the aggregate level, and a positive relation between the industry-level slope asymmetry
and asset illiquidity.

JEL Classification: G31, G30

Keywords: Investment, Real option, Learning, Business Cycle

Capital investment is one of the most important corporate decisions. It
determines a firm’s long-term prospects and shareholder value creation. Cap-
ital investment is also a fundamental driver of economic growth. Although
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the literature on this subject is vast, what drives capital investment remains
an elusive question. What is particularly puzzling is that capital invest-
ment tends to decline sharply when an economy enters a recession, and
to recover only slowly as economic conditions improve. During the recent
financial crisis, the U.S. gross private domestic investment quantity index
dropped sharply from 141 in 2007 to 100 in 2009. In 2013, the index was still
below its pre-crisis level, despite several years of record-low interest rates,
rising stock markets, and strong corporate earnings after the crisis.1 The
weak recovery of corporate investment activity has been a topic of much
discussion in the post-crisis policy debates and media reports.2

We propose a micro-founded explanation for the sharp decline and slow
recovery of capital investment, accounting also for several new patterns of
investment asymmetry that we uncover. Using the quarterly Compustat-
CRSP merged database, we first document strikingly different patterns of
investment asymmetry at the aggregate and firm levels. Confirming the ex-
istence of a slope asymmetry at the aggregate level, we find that the decline
in the average capital growth rate across firms during the recession is much
faster than the recovery during the expansion. Furthermore, the first-order
difference of the average capital growth rate is negatively skewed, especially
when the growth rate is measured over three or four quarters. In addition to
the evidence of a slope asymmetry, we also find the average capital growth
rate itself to be negatively skewed, suggesting the existence of a level asym-
metry. However, neither of these asymmetries holds at the individual firm
level. Instead, firm-level capital growth rates are strongly positively skewed,
and their first-order differences are basically symmetric. These strikingly dif-
ferent patterns of asymmetries impose important restrictions on a structural
explanation of the slow recovery of investment.

Our model of optimal investment captures three important features of the
real world: (1) installed capital is illiquid, resalable only at a discount (i.e.,
costly reversibility) or not resalable at all (i.e., complete irreversibility); (2)
the profitability of an individual firm is strongly influenced by macroeco-
nomic conditions; and (3) firms face substantial uncertainty about the true
state of the economy. We consider a cross-section of risk-neutral firms with
an infinite horizon. Each firm faces its own business conditions, summa-
rized by a random demand factor. The expected growth rate of a firm’s
demand factor depends on the state of the economy, which shifts between a
high-growth state (expansion) and a low-growth state (recession) at random

1 Index values for the years 2010 through 2013 were 113, 119, 130, and 136, respectively.
See Bureau of Economic Analysis National Income and Product Accounts Tables 5.2.3.
2 See, for example, the Wall Street Journal article, “Investment falls off a cliff: U.S. com-
panies cut spending plans amid fiscal and economic uncertainty,” December 2, 2012.
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times. The true state is not directly observable. Firms update their beliefs
continuously by observing their own operating profits and a public signal.
Capital stock can be expanded instantaneously at a constant marginal cost,
but the resale price of capital is lower than its purchase price.

We calibrate the parameters of our model, and derive numerically the
optimal investment policy of a typical firm. Under costly reversibility, the
policy is characterized by two reflecting boundaries: an upper bound and a
lower bound on the firm’s capital stock, normalized by its current demand
factor. The lower bound represents the firm’s optimal capacity, and the up-
per bound its maximum tolerated capacity. Both bounds are functions of
the firm’s belief about the current state of the economy. The firm takes no
action as long as its normalized capital stock is between these two bound-
aries, and invests (disinvests) instantaneously once it hits the lower (upper)
bound.

Since demand grows faster during an expansion, the firm’s optimal nor-
malized capacity increases in general with the posterior probability that the
economy is in an expansion. Furthermore, because the option value of wait-
ing increases with uncertainty about the true state, the relation between
optimal capacity and the firm’s belief is convex, especially when signals are
very informative. When the current posterior probability of expansion is
low, positive signals lead to only a relatively modest increase of optimal ca-
pacity because of increased uncertainty. When this posterior probability is
high, bad signals lead to a sharper decline of optimal capacity. This arises
because the decline in the expected growth rate is accompanied by increased
uncertainty.

After deriving the optimal investment/disinvestment policy, we simulate
a large number of firms following this policy. Firms experience the same
sequence of macroeconomic shocks as empirically observed. They receive
a common stream of public signals and heterogeneous shocks to their own
business conditions. We examine the patterns of capital growth rates at both
the firm and aggregate levels. Our simulated data match the empirical data
remarkably well. The average capital growth rate declines fast and recovers
slowly. Both its level and its slope are negatively skewed. At the same time,
capital growth rates of individual firms are positively skewed in level and
symmetric in slope.

These contrasting features of asymmetry arise because aggregate invest-
ment depends not only on the scale of investment by any given firm but also,
and more crucially, on the number of firms investing at a given time. Costly
reversibility implies that a firm disinvests rarely, invests intermittently, and
remains inactive in most of the time. Therefore firm-level capital growth
rates are positively skewed. Yet because an individual firm invests and re-
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turns to inactivity at a similar speed, firm-level capital growth rates have a
symmetric slope.

At the aggregate level, because idiosyncratic shocks in the cross-section
are averaged out, the distribution of the average capital growth rate is de-
termined largely by the relative length of expansions and recessions. Since
recessions are generally shorter than expansions, there are relatively few
observations drawn from recession periods. These observations form a long
left tail of the distribution of the average growth rate, making it negatively
skewed. More important, the speed of adjustment is also asymmetric, due
to the endogenous distribution of firms relative to their optimal capacities.
During a recession, a high proportion of firms are far from their investment
boundaries, because of low demand growth. The excess capacities these firms
have cumulated over time prevent them from investing even when their be-
liefs change significantly upon the arrival of a positive signal. During an
expansion, however, a large proportion of firms are pushed to the invest-
ment boundary by high demand growth. When a negative signal arrives,
these firms cease investment simultaneously, causing a sharp decline in the
average capital growth rate, even if no firm actively disinvests.

Our analysis shows that both incomplete information and costly reversibil-
ity are key to explain the slow recovery. If information is complete, both the
decline and the rebound of the average capital growth rate will be fast and
abrupt. If investment is perfectly reversible, then the average capital growth
rate simply mirrors the demand growth rate, and its slope is symmetric.
More generally, our simulation shows that as reversibility increases, the neg-
ative slope asymmetry of the average capital growth rate becomes weaker,
or even disappears. In support of this prediction, we find that capital growth
rates of industries with higher capital asset liquidity, measured by the active-
ness of capital reallocation relative to capital investment, following Eisfeldt
and Rampini (2006), exhibit less slope asymmetry.

We extend our model by allowing for procyclical depreciation and coun-
tercyclical financing frictions. We find that procyclical depreciation further
slows down the recovery of the average capital growth rate, and magnifies
its slope asymmetry. This arises because the higher depreciation rate dur-
ing expansions reduces the marginal value of capital, thus dampening the
incentive to invest as economic conditions improve. On the other hand, we
find that countercyclical financing frictions per se do not increase the slope
asymmetry at the aggregate level.

Our work is closely related to the study of Guo et al. (2005) on optimal ir-
reversible investment under random regime shifts, but with some significant
differences. First, while Guo et al. (2005) focus on the theoretical properties
of the optimal investment policy of an individual firm, we study a large cross-
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section of firms facing both common and heterogeneous shocks, and calibrate
our model to replicate the major empirical features at both the aggregate
and firm levels. Second, while they assume regime shifts to be perfectly ob-
servable, we assume that firms can only infer the true regime from noisy
signals. The incomplete information setup provides a natural framework to
examine the impacts of endogenously determined time-varying uncertainty.
It is also key for our model to match the empirical data. Complete informa-
tion implies abrupt changes in investment following a regime shift in either
direction, which does not conform to empirical observations. Third, while
they assume investment to be completely irreversible, we allow for different
degrees of reversibility, encompassing complete reversibility and irreversibil-
ity as two special cases. This allows us to investigate the economic impacts
of different degrees of reversibility, and link investment to cross-sectional
measures of reversibility, such as capital asset liquidity.

Our work extends the literature on the real options approach to invest-
ment by considering firms’ optimal investment behavior over the business
cycle and its implications for aggregate investment.3 Bloom (2009) shows
that macro uncertainty shocks can generate sharp recessions and recover-
ies through their impacts on firms’ investment and hiring decisions. Unlike
us, he takes the degree of uncertainty as exogenous. Capital investment un-
der incomplete information has been studied by Alti (2003), Decamps et al.
(2005), Klein (2009), and Grenadier and Malenko (2010). These authors do
not consider the cyclical features of investment, which is the focus of our
study.

Our work also contributes to the literature on business cycle asymmetry.
There is a long debate about whether economic downturns are more abrupt
and violent than upturns. The empirical evidence is somehow mixed. While
Neftci (1985) and Sichel (1993) find evidence supporting the asymmetry
hypothesis, Falk (1986) and DeLong and Summers (1986) conclude that
there is very little evidence of asymmetry. These studies focus on macroe-
conomic series such as GNP, industry production, or unemployment. Van
Nieuwerburgh and Veldkamp (2006) show evidence of negative skewness in
the growth rate of several macroeconomic series, including aggregate invest-
ment.4 Our empirical analysis of the firm-level data provides strong evidence
of asymmetry in corporate investment. To the best of our knowledge, we are
the first to examine the asymmetry of the change in the capital growth rate,

3 See Dixit and Pindyck (1994) for a review of the capital investment literature using the
real options approach.
4 Explanations for business cycle asymmetry have been advanced by Chamley and Gale
(1994), Gale (1996), Acemoglu and Scott (2003), Veldkamp (2005), and Van Nieuwerburgh
and Veldkamp (2006).
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and to contrast and reconcile the different patterns of asymmetries of capital
growth rates at the firm and aggregate levels.5

The paper is organized as follows. Section 1 presents empirical evidence
for the asymmetry of capital growth rates at the firm and aggregate levels.
Section 2 presents the model. Section 3 characterizes the optimal invest-
ment/disinvestment policy. Section 4 compares the paths of simulated and
empirical capital growth rates over the business cycle. Section 5 compares
the skewness patterns of simulated and empirical data, and examine the ef-
fects of different degrees of reversibility. Section 6 considers two extensions of
the model to allow for procyclical depreciation and countercyclical financing
frictions. Section 7 concludes.

1. Asymmetries of Capital Growth Rates: Empirical Facts

1.1 CAPITAL GROWTH RATES OVER THE BUSINESS CYCLE

To examine the empirical patterns of firms’ investment behavior, we use
the quarterly Compustat-CRSP merged database from 1975 through 2011
(quarterly data on capital stock are sparse before 1975), excluding financial
firms (SIC codes between 6000 and 6999), utilities (SIC codes between 4900-
4999), and government entities (SIC codes of 9000 or above). We measure a
firm’s net capital stock by its net property, plant, and equipment (PPENT in
Compustat), and measure its investment by the continuously compounded
growth rate of net capital.6 All nominal values are converted into year 2005
dollars using the quarterly GDP deflator. A firm is included in the sample
if its PPENT reaches the $1 million threshold in the current year or any
previous year.

Since we are interested in capital growth arising from physical investment,
which is different from growth through mergers and acquisitions, we exclude
firms heavily involved in M&A activities. For this purpose, we match our
sample to the SDC Mergers and Acquisitions database of Thomson Reuters,
which has a comprehensive coverage of M&A deals from 1980 through 2011.
We exclude fiscal years in which the total transaction value of a firm’s M&A

5 Albuquerque (2012) documents and provides a theory to reconcile the negative skewness
of aggregate stock market returns and the positive skewness of individual stock returns.
His explanation hinges on the heterogeneity of firms’ announcement events.
6 A simple percentage growth rate is inherently asymmetric, since it cannot go below
-100% due to the non-negativeness of capital stock. We use the continuously compounded
growth rate to avoid such mechanical asymmetry. Measuring investment by the gross
investment rate, defined as capital expenditures minus sales of capital, deflated by the
lagged gross capital, leads to very similar results for the time period 1984 through 2011
(quarterly capital expenditures data are not available for earlier years).
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deals exceeds 20% of its total assets at the prior fiscal year end. Further-
more, we require the difference between the increase in net capital and net
investment (defined as capital investment minus sales of capital and depre-
ciation) to be less than 20% of the net capital at the prior fiscal year end. In
the absence of M&As, this difference should be zero by accounting identity.

The final sample consists of 484,824 observations of quarterly capital
growth rate at the firm level, with an average of 3276 firms in each quarter.
To limit the impact of extreme outliers or potential data errors, we win-
sorize the firm-level growth rates at the 2.5th and the 97.5th percentiles of
the cross-sectional distribution of each quarter. We use the cross-sectional
average of quarterly capital growth rates (equally weighted) to measure in-
vestment at the aggregate level.

We first investigate the behavior of the average capital growth rate at
the turning points of business cycles identified by the National Bureau of
Economic Research (NBER). According to the NBER, there are six troughs
and six peaks during our sample period.7 A trough marks the end of a
contraction and the start of an expansion, while a peak marks the end of
an expansion and the start of a contraction. The left diagram in Figure 1
shows the crash of the average capital growth rate from one quarter before
the peak through six quarters after it. The right diagram shows the slow
recovery from one quarter before the trough through 12 quarters after it.
As one can see, the downward shift is very steep, while the upward move is
much slower. It takes six quarters for the average capital growth to move
from the peak to the bottom, and twice as long for it to get back to the
peak. This is consistent with the business cycle asymmetry documented by
Neftci (1985), Sichel (1993), and Van Nieuwerburgh and Veldkamp (2006)
using macroeconomic data.

1.2 SKEWNESS OF CAPITAL GROWTH RATES

To quantify asymmetry, we use a standard measure in statistics, skewness,
which is defined as the third central moment of a random variable, normal-
ized by the third power of standard deviation. A negative skewness value
indicates that the left tail of a distribution is longer than the right tail and
that the bulk of the observations lie to the right of the mean. We call this
a negative asymmetry. A positive skewness value indicates the opposite. A
symmetric distribution has zero skewness.

Following Sichel (1993), we distinguish between two types of asymmetry.
Level asymmetry (deepness) refers to the characteristic that troughs are
7 The trough quarters are 1975 Q1, 1980 Q3, 1982 Q4, 1991 Q1, 2001 Q4, and 2009 Q2.
The peak quarters are 1973 Q4, 1980 Q1, 1981 Q3, 1990 Q3, 2001 Q1, and 2007 Q4.
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Fig. 1: Mean net capital growth rate over the business cycle. The left
diagram shows the average capital growth rate from quarter -1 to quarter 6,
where quarter 0 is the business cycle trough. The right diagram shows the
average net capital growth rate from quarter -1 to quarter 12, where quarter
0 is the business cycle peak. Both trough and peak quarters are dated by
the NBER. The capital growth rate is averaged first cross firms and then
across cycles during 1975 Q1—2011 Q4.

farther below the trend than peaks are above. Slope asymmetry (steepness)
refers to the characteristic that downturns are steeper than upturns, as we
see in Figure 1. We use the skewness of the capital growth rate to measure
level asymmetry, and the skewness of the first-order difference of the capital
growth rate to measure slope asymmetry. To capture the asymmetries of
capital growth over different time intervals, we calculate growth rates over
various time horizons, following Van Nieuwerburgh and Veldkamp (2006).
An n-quarter growth rate measured in quarter t, gt,n, is defined as the sum of
n continuously compounded quarterly growth rates from quarters t− n+ 1
through t. The first-order difference, i.e., the slope, of the n-quarter growth
rate is then defined as gt,n − gt−n,n.

Panels (a) and (b) of Figure 2 show, respectively, the estimated skewness
values for the levels and slopes of average capital growth rates calculated
over various time intervals, from one to ten quarters. To test whether the
values are statistically different from zero, we also plot the 90% confidence
interval of each estimate.8

8 Since the average n-quarter capital growth rate is autocorrelated because of overlapping
time intervals, the standard error of the skewness estimate cannot be computed using the
standard method. We therefore follow the Monte Carlo procedure of DeLong and Summers
(1986). First, we estimate a fifth-order autoregressive model for each time series of the
growth rate (higher orders of the autoregressive model do not change the significance of our
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Fig. 2: Skewness of capital growth rates: Empirical estimates. Panels
(a) and (b) show the skewness values for the levels and the slopes of average
capital growth rates measured over various time intervals (from one quarter
to ten quarters), respectively. Panels (c) and (d) show the average skewness
values for the levels and slopes of firm-level capital growth rates measured
over various time intervals, respectively. The dashed curves show the upper
and lower bounds of the 90% confidence interval of each skewness estimate.

Consistent with the sharp decline and slow recovery observed in Figure
1, the average capital growth rates exhibit both level asymmetry and slope

results). Second, we use the estimated model to generate 1000 artificial series for the sample
period under the assumption that shocks to the autoregressive process were independent
and normally distributed. Third, we use the standard deviation of the skewness values
across the simulated series as the standard error of the skewness estimate under the null
hypothesis of no asymmetry.
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asymmetry. The estimated values of skewness are below -0.5 for the levels of
growth rates measured over all time intervals in Panel (a).9 For measurement
intervals up to six quarters, they are negative at the 90% significance level.
This indicates that troughs are deeper below than peaks are above the mean,
which is evidence of level asymmetry.

The first-order differences of the average capital growth rates are also neg-
atively skewed, except when the measurement interval is longer than two
years. This indicates a steeper slope of the downturn than of the upturn,
i.e., a slope asymmetry. The estimated skewness value is non-monotonic in
the length of the measurement interval. It starts at -0.34 for the growth rate
measured over one quarter, declines to a bottom of -0.68 for the growth rate
measured over three or four quarters, and rises again for growth rates mea-
sured over longer time intervals. This suggests that the decline over three
or four consecutive quarters generates more extreme outliers than the de-
cline over one quarter does. As the measurement interval lengthens further,
however, the slope asymmetry is gradually smoothed out due to averaging
across quarters.

Are the level and slope asymmetries of the average capital growth rate
simply a carryover of asymmetries at the firm level? To answer this ques-
tion, we examine skewness at the firm level. For each firm with at least 40
observations, we calculate the skewness values of the levels and slopes of
its capital growth rates over various time horizons, and then take a simple
average across firms. The cross-sectional averages of the skewness estimates,
together with their 90% confidence intervals, are plotted in Panels (c) and
(d) of Figure 2.10 The patterns are strikingly different from those at the
aggregate level. The levels of various capital growth rates are strongly pos-
itively, instead of negatively, skewed. The average skewness value starts at
0.94 for the quarterly growth rate, deceases steadily as the measurement in-
terval lengthens, and remains positive even for the ten-quarter growth rate
(Panel (c)). At the same time, the slope asymmetry is very small econom-
ically. The point estimates of the skewness for the slopes of capital growth
rates never go below -0.05.

These results suggest that investment at the aggregate level behaves very
differently from that at the firm level. In the next section, we present a dy-
namic model that generates a slow recovery, and at the same time, reconciles
the different patterns of asymmetries at the aggregate and firm levels.

9 Van Nieuwerburgh and Veldkamp (2006) report a skewness value of -0.72 for the quar-
terly growth rate of per capita real investment from 1952 through 2002.
10 The standard error of the firm-level skewness estimates is the standard deviation across
firms divided by the square root of the number of firms.
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2. A Dynamic Model of Investment

2.1 SETUP

We consider a cross-section of risk-neutral firms with an infinite time hori-
zon. The firms are identical ex ante, but face both common and hetero-
geneous shocks. A typical firm operates in an environment similar to that
of Guo et al. (2005), but with incomplete information. Time is continuous.
Investment is incremental. It is either completely irreversible, as in Guo
et al. (2005), or costly reversible. Each firm’s cash flow is driven by a dis-
tinct stochastic factor. Depending on the state of the macroeconomy, the
expected growth rate of this factor shifts between a high level and a low
level at random times. We describe the economic environment and the opti-
mization problem from the perspective of a typical firm in the cross-section.

Cash Flows. The operating income (before depreciation) of the firm is
assumed to be given by a linearly homogeneous function f : R+ × R+ → R+

satisfying:

f(xt, kt) =
1

1− α
xαt k

1−α
t , (1)

where (kt)t≥0 represents the process of the firm’s net capital stock, and
(xt)t≥0 represents the process of a demand factor.11 Assuming that the firm’s
output is nonstorable, Equation (1) can be interpreted as the profit of either
a price-taking firm with decreasing returns to scale, or a monopolist facing
constant returns to scale and a constant elasticity demand curve (see Abel
and Eberly (1996) and Morellec (2001)).

Demand Shocks. Assume that the demand factor for the firm, xt, evolves
according to the stochastic differential equation:

d ln(xt) = µtdt+ σxdWxt, x0 > 0, (2)

where Wxt is a standard Wiener process, and ln(x) is the natural logarithm
of x.12 The volatility σx is a known constant. The expected (continuously-
compounded) growth rate of the demand factor, µt, is determined by macroe-
conomic conditions, and is identical for all firms in the economy. It is low
in a recession (µt = µl) and high in an expansion (µt = µh > µl). Within a

11 The factor xt can be generally interpreted as an index of a firm’s business conditions,
which reflects demand, productivity, and costs of factors other than capital.
12 We write the stochastic differential equation in terms of d ln(x) instead of dx so that
the expected continuously compounded growth rate is not affected by the volatility. Note
also that σx is the same in both states. Since the volatility of a process can be estimated
almost instantaneously in continuous time, firms would learn the true state of the economy
almost instantaneously if σx differs across states.
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given state of the economy, the demand factor follows a standard geometric
Brownian motion.

The macroeconomic condition switches between expansions and recessions
at random times. Correspondingly, µt switches randomly between µh and µl.
More specifically, we assume that µt is driven by a continuous-time Markov
jump process with the transition probabilities

P (∆t) = I +

(
−λh,l +λh,l
+λl,h −λl,h

)
(∆t+ o(∆t)), (3)

where I is the identity matrix and λh,l and λl,h are, respectively, the constant
intensities of transition from µh to µl and vice versa.13 The magnitudes of
λh,l and λl,h determine the persistence of the expansion and the recession,
respectively. The lower the transition intensity, the higher the persistence.

Investment, Disinvestment, and Depreciation. As in Abel and
Eberly (1996), a firm can add capital incrementally and instantaneously
at a constant marginal cost, which is normalized to be one. Due to the
specificity of physical capital and frictions in secondary capital asset mar-
kets, the resale price of capital, b ∈ [0, 1), is lower than the purchase price.14

The wedge between the purchase and resale prices of capital, 1− b, can be
interpreted as a bid-ask spread, as in the standard asset pricing literature.
This wedge captures the illiquidity of capital assets, which is the essence
of costly reversibility of investment. b = 0 indicates complete irreversibility,
which is embedded in our model as a special case.15

Installed capital depreciates at a constant rate of ξ.
Information. The firm can observe its own realized demand factor xt

through its realized operating profit ft, but not its expected growth rate
µt. In other words, the true state of the economy that determines µt is a
hidden process. This implies that Wxt is not observable as well. When the
firm observes a certain increase or decrease in operating profit, it does not
know whether it comes from the drift µt or from the noise terms Wxt. Yet the
distinction between these possible sources is of core relevance for the firm’s
investment decision. Since disinvestment is costly, investment depends not
only on the current demand factor, but also on expectations about its future
growth rate.

Other information available to the firm regarding the macroeconomic state
is summarized by a publicly observable signal, st, which evolves according

13 The assumption of only two states is for simplicity and clarity of economic intuition.
The model can be extended to allow for a finite number of states.
14 See, for example, Eisfeldt (2004), for a model with frictions in the secondary markets
of capital assets.
15 The case of perfect reversibility, b = 1, is discussed in Section 3.2.
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to the stochastic differential equation:

d ln(st) = µtdt+ σsdWst, s0 > 0; (4)

where Wst is a standard Wiener process, and σs is a publicly known constant
representing the volatility of the signal process. The parameter σs measures
the noisiness of the public signal. It characterizes (inversely) the accuracy
of the publicly available data about the economy. We assume that dWst and
dWxt are jointly normally distributed, with a known instantaneous correla-
tion coefficient ρ ∈ [−1, 1]. Note that the drift terms in equations (2) and
(4) are identical. This assumption is made for simplicity. Our main results
remain unchanged if we allow for imperfect correlation between the expected
growth rates of xt and st.

Allowing the firm to observe a public signal about the macroeconomic
state not only makes our model more realistic, but also allows us to inves-
tigate the effect of information quality while keeping the volatility of the
demand factor constant. Without the public signal, information quality is
directly tied to the volatility of the demand factor σx. Since σx affects invest-
ment not only through the information channel, as we show in Section 3.2,
we cannot separate the information quality effect from the demand volatility
effect in the absence of st.

2.2 LEARNING ABOUT THE STATE OF THE ECONOMY

By observing the demand factor xt and the signal st over the time inter-
val [0, t), the firm can continuously update its belief about the state of
the economy. To formalize the rational learning rule, we denote by Ft the
canonical nondecreasing filtration jointly created by xt and st, and by πt
the probability that µt = µh conditional on Ft and a prior π0. The condi-
tional mean of the continuously compounded growth rate at time t is then
πtµh + (1− πt)µl. Unexpected changes in xt and st give rise to an update
of the belief.

Learning under this circumstance is a standard nonlinear filtering problem
and can be characterized by the proposition below.16

Proposition 1. The optimal updating of the belief satisfies the stochastic
differential equation:

dπt = [−πtλh,l + (1− πt)λl,h]dt+ (µh − µl)πt(1− πt)1′(Φ′)−1dWF
t , (5)

16 See David (1997) for an early application of this filter in finance.
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where WF
t is a two-dimensional independent Wiener process with respect to

Ft defined as

dWF
t ≡

(
dWF

xt

dWF
st

)
≡ Φ−1

(
d ln(xt)− E(µt|Ft)dt
d ln(st)− E(µt|Ft)dt

)
, (6)

Φ is a 2× 2 matrix satisfying

ΦΦ′ =

(
σ2
x ρσxσs

ρσxσs σ2
s

)
,

and 1 is a two-dimensional column vector with both elements equal to 1.

Proof 1. See Theorem 9.1 in Liptser and Shiryaev (2001) for the basic
filtering equation, and Equation (A1) in Veronesi (2000) for an extension
to the vector case. Equation (5) is obtained by applying Equation (A1) in
Veronesi (2000). dWF

xt and dWF
st are uncorrelated because

dWF
xtdW

F
st = (1, 0) Φ−1(ΦΦ′dt)(Φ−1)′(0, 1)′ = 0.

This, plus the assumption of joint normality, implies that dWF
xt and dWF

st

are independent. �

The diffusion process πt is bounded between 0 (µt = µl, almost sure) and
1 (µ = µh, almost sure). The drift term in Equation (5) indicates that in the
absence of information shocks, there is a tendency for the belief to revert
toward the unconditional mean:

π̄ =
λl,h

λh,l + λl,h
, (7)

which satisfies [−πtλh,l + (1− πt)λl,h] = 0. Therefore, the impact of any par-
ticular information shock decays gradually over time.

The diffusion term in Equation (5) characterizes the response of the belief
to unexpected changes in the realized demand factor xt and the signal st.
E(µt|Ft)dt represents the best forecast of d ln(xt) and d ln(st) conditional
on the information set Ft, and dWF

t represents the standardized forecast
errors. It is straightforward to see from the equation that the belief is more
sensitive to the forecast errors the greater the difference between the two
possible growth rates, (µh − µl), and the higher the uncertainty about the
state of the economy, captured by the conditional variance of the belief,
πt(1− πt). These results are quite intuitive. When the growth rates in the
two states do not differ much, or when the firm is very sure about the true
state (i.e., πt is close to one or zero), unexpected changes in the signals do
not have much impact on the belief.
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An alternative formulation of the optimal updating rule, Equation (A1)
in Appendix A.1, provides some further insights into the learning process.
It suggests that the optimal learning from these two jointly normal signals
can proceed in two steps. One first forms a minimum variance “portfolio”
of both signals, and then updates the belief using this compound signal.
The information quality of this compounded signal is measured by the in-
verse of its variance, 1

σ2 = 1′(ΦΦ′)−11. Equation (A1) shows that when the

compound signal is more precise (i.e., when σ2 is small), the firm’s belief
responds to the compound signal more strongly.

The fact that WF
t is a Wiener process with respect to the filtration Ft

means that all information about the state of the economy available at time
t is incorporated in the current belief πt. In other words, any information
relevant for the future is used immediately to update the current belief.
Therefore, the belief π follows a Ft-Markov process. Using dWF

xt and dWF
st

defined by Equation (6), we can rewrite the joint dynamics of xt and st in
terms of unexpected changes with respect to Ft:(

d ln(xt)
d ln(st)

)
= [πtµh + (1− πt)µl]

(
1
1

)
dt+ Φ

(
dWF

xt

dWF
st

)
, (8)

where πt is updated as stated in Equation (5).

2.3 FIRM VALUE DYNAMICS AND BOUNDARY CONDITIONS

Since there is no fixed adjustment cost, and the marginal cost of capital is
constant, the firm’s optimal investment policy can be characterized by two
reflecting boundaries, which split the state space into an investment region,
an inaction region, and a disinvestment region. The firm remains inactive
in the interior area of the inaction region, and increases or decreases capital
instantaneously by an infinitesimal amount dk whenever it hits the bound-
aries.17 We first derive the firm value dynamics in the inaction region, and
then specify the boundary conditions that characterize the optimal invest-
ment/disinvestment policy.

Since the Bayesian belief πt follows an Ft-Markov process, the firm value is
fully determined by the current capital stock kt, the current demand factor
xt, and the current belief πt. The value function V , which represents the
present value of operating profit flow under the optimal investment policy,

17 For the special case of complete irreversibility (b = 0), the upper boundary is infinity,
and the disinvestment region is empty.
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can be written as V (kt, xt, πt). Let r denote the instantaneous riskless rate
of interest. Proposition 2 describes the dynamics of the firm value V :

Proposition 2. The firm value can be written as V (k, x, π) = xv(h, π),
where h ≡ k

x and v ≡ V
x represent the capital stock and firm value, respec-

tively, normalized by the demand factor. Furthermore, in the inaction region,
the normalized firm value, v, has to satisfy the partial differential equation
(Hamilton-Jacobi-Bellman equation):

[r − (πµh + (1− π)µl +
1

2
σ2
x)]v =

h1−α

1− α
− h[πµh + (1− π)µl +

1

2
σ2
x + ξ]

∂v

∂h

+
1

2
σ2
xh

2 ∂
2v

∂h2
+ [−πλhl + (1− π)λlh]

∂v

∂π

+[π(1− π)(µh − µl)]
∂v

∂π
(9)

+
[π(1− π)(µh − µl)]2

2σ2

∂2v

∂π2

−hπ(1− π)(µh − µl)
∂2v

∂h∂π
,

with σ2 ≡ 1
1′(ΦΦ′)−11 , as defined in Equation (A2).

Proof 2. A proof is provided in Appendix A.2. �

From Proposition 2, it follows that the normalized firm value, v, depends
only on the ratio of installed capital to the demand factor and the belief
about the state of the economy.18

The partial differential equation (9) has to be solved under proper bound-
ary conditions. As the marginal value of capital decreases with installed
capital and increases with the demand factor, the inaction region where
the firm neither invests nor disinvests is associated with intermediate val-
ues of h = k/x. When installed capital stock is low relative to demand, the
marginal value of installed capital increases. Therefore, as h reaches a cer-
tain lower bound, the firm will invest. This critical threshold h∗i forms the
investment boundary. It specifies the optimal capital stock relative to the
demand factor, and therefore can be interpreted as the optimal normalized

18 This homogeneity property simplifies the solution of the valuation equation because
it reduces the dimensionality of the problem. It arises from the homogeneity property of
the operating profit (f(xt, kt) = xf(1, kt/xt)), and the absence of fixed costs. Note that
the homogeneity property also allows us to solve the problem in terms of Tobin’s average
Q, which can be written as Q(xt/kt, πt) = V (kt, xt, πt)/kt, and has to satisfy a partial
differential equation similar to (9) in xt/kt and πt.
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capacity. At this boundary, every positive demand shock (which represents a
negative shock to h) is offset by an appropriate increase in capital. Since the
firm never enters the interior area of the investment region, this boundary
is called a reflecting boundary. It is a function of the belief π, because the
marginal value of invested capital depends on the growth prospects of the
firm.

When installed capital is high relative to current demand and, thus, the
marginal value of capital is low, the firm has an incentive to sell capital at
a discounted price b per unit. Therefore, there exists an upper threshold
h∗d at which any negative shock in demand is accommodated by proper
disinvestment. This threshold forms the disinvestment boundary. Like the
investment boundary, h∗d is also a function of the belief π. The normalized
capital never exceeds h∗d.

Since the marginal cost of capital is normalized to be one, a rational valua-
tion of the firm implies that at the investment and disinvestment boundaries,
the firm value has to satisfy the value-matching conditions

V (x, k, π) = V (x, k + dk, π)− dk,

and

V (x, k, π) = V (x, k − dk, π) + b dk,

respectively. These conditions can be written in derivative form as

lim
k→xh∗i

∂V

∂k
= 1, lim

k→xh∗d

∂V

∂k
= b.

These value-matching conditions arise because firm value today fully reflects
future investment/disinvestment activity. They require that the marginal
value of capital, i.e., Tobin’s marginal Q, be equal to the constant marginal
cost of adding capital at the investment boundary, and equal to the constant
resale price of capital at the disinvestment boundary. Using the homogeneity
feature of the value function, we can rewrite these boundary conditions as

lim
h→h∗i

∂v(h, π)

∂h
= 1, lim

h→h∗d

∂v(h, π)

∂h
= b. (10)

To ensure the optimality of the endogenously determined boundaries, we
also require smoothness of the marginal value of capital at the boundaries,
which implies the following super-contact (or smooth-pasting) conditions at
both boundaries (see Dumas (2001)):

∂2V

∂k∂x
= 0,

∂2V

∂k2
= 0,

∂2V

∂k∂π
= 0.
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Table 1: Parameter values. This table summarizes the parameter values
for the base case scenario.

Notation Economic meaning Value

α operating profit parameter 0.74

µh expected continuously compounded growth rate in expansion 0.0669
µl expected continuously compounded growth rate in recession -0.1122

λh,l transition intensity from expansion to recession 0.2557

λl,h transition intensity from recession to expansion 0.7163
ξ depreciation rate 0.1162

σx instantaneous volatility of demand factor xt 0.3115

σs instantaneous volatility of signal st 0.25
b resale price of one unit of capital 0.80

r risk-free rate 0.05

ρ instantaneous correlation between dWst and dWxt 0.05

These super-contact conditions translate into conditions for v(h, π) as fol-
lows:

limh→h∗i
∂2v(h, π)

∂h2
= lim

h→h∗i

∂2v(h, π)

∂h∂π
= 0,

limh→h∗d
∂2v(h, π)

∂h2
= lim

h→h∗d

∂2v(h, π)

∂h∂π
= 0.

(11)

3. Optimal Investment/Disinvestment Policy

Our model does not have an analytical solution, so we solve it numerically.
Table 1 summarizes the parameter values for our base case scenario. Param-
eters with four digits after the decimal point are estimated using the annual
Compustat-CRSP merged database over 1950-2011. Appendix A.3 details
our calibration procedure. To solve the Hamilton-Jacobi-Bellman equation
(9) along with the boundary conditions (10) and (11), we apply the ap-
proach derived in Nelson and Ramaswamy (1990) to map the dynamics of
the belief π onto a recombining tree. We then use a two-dimensional tree, as
outlined in Boyle et al. (1989), to jointly determine the firm value and the
optimal investment/disinvestment boundaries, h∗i (π) and h∗d(π). A detailed
description of the numerical procedure is in Appendix A.4.
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3.1 INVESTMENT/DISINVESTMENT BOUNDARIES

Figure 3 shows the investment (Panels (b), (d), (f)) and disinvestment (Pan-
els (a), (c), (e)) boundaries as a function of the current belief π. The area
between the boundaries is the inaction region. The solid curves represent the
boundaries for our base case. The dashed curves represent cases in which
one of the parameter values deviates from the base case.

Consider first the base case investment boundary in Panel (b). This
boundary represents the firm’s optimal normalized capital stock. Not sur-
prisingly, this boundary increases with the belief π. When the firm believes
that the economy is in an expansion (π → 1), it invests earlier, i.e., at a
higher boundary, than when it believes the economy is in a recession (π → 0).
Therefore, investment occurs when k/x hits the boundary either from above
(as capital depreciates or demand increases), or from the left (as π increases).

Notably, the investment boundary is convex in the belief π, indicating
that the firm’s investment decision is relatively insensitive to changes in the
belief when π is low. This results from interaction of the expected growth
rate and uncertainty about the growth rate. When π is close to zero, i.e.,
when the firm is almost sure of being in the low-growth state, a positive
signal increases the expected growth rate of future demand. At the same
time, it also increases uncertainty about the current state, captured by a
higher value of conditional variance, π(1− π), thus increasing the option
value of waiting. As a result, the firm is reluctant to invest. If, however, a
negative signal is received when π is high, both the resulting lower expected
growth rate and greater uncertainty diminish the firm’s incentive to invest.
Therefore the investment boundary drops sharply.19

The base case disinvestment boundary, shown in Panel (a), also increases
with π. This boundary characterizes the maximum tolerated normalized
capacity k/x. When k/x hits this boundary, either from below (x decreases)
or from the right(π decreases), disinvestment takes place, which pushes k/x
back toward the inaction region. When π is high, expected demand growth
is high, so a firm allows the normalized capacity k/x to reach a higher
threshold.

Unlike the investment boundary, the disinvestment boundary is a concave
instead of a convex function of the belief π. This concavity arises again from
the effects of signals on both expected demand growth and uncertainty.
When a firm receives a bad signal in a good time, the resulting decrease in
expected demand growth induces an incentive to disinvest, yet the increased

19 Veronesi (1999) derives a similar asymmetry in the responses of stock prices to signals.
He does not consider firm investment. The asymmetry arises in his model due to risk
aversion rather than the option value of waiting.
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Fig. 3: Optimal investment and disinvestment boundaries. This fig-
ure depicts the optimal investment boundary (Panel (b), (d), and (f)) and
disinvestment boundary (Panel (a), (c), and (e)) as a function of the belief
π. The solid curves represent the base case parameterization specified in
Table 1. The dashed curves represent cases in which one of the parameters
(marked in graphs) deviates from its base case value while all others remain
unchanged.
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uncertainty induces an incentive to wait. As a result, the maximum tolerated
capacity decreases only slightly. By contrast, when a firm receives a good
signal in a bad time, both the higher expected growth rate and increased
uncertainty weaken the firm’s incentive to disinvest, therefore the maximum
tolerated capacity increases significantly.

3.2 COMPARATIVE STATICS

Information Quality. By varying the volatility σs of the public signal st
while keeping the other parameters at the base case values, we can exam-
ine the effects of information quality on investment/disinvestment policy. A
lower σs implies faster learning, and therefore lower uncertainty about the
macroeconomic state.

Comparing the boundaries under different values of σs in Panels (a) and
(b) of Figure 3, we find that more precise signals make the investment
boundary more convex and the disinvestment boundary more concave. Other
things equal, the more precise the information, the stronger the response of
the belief to signals, as we have noted in Section 2.2. This leads to a more
volatile belief, and thus a higher option value of waiting. Higher informa-
tion quality therefore amplifies the convexity of the boundary. When σs is
sufficiently small, the firm always invests conservatively as if it were in a
recession, unless it is almost sure of being in an expansion. As a result, the
investment boundary is almost flat for π below one and increases sharply as
π approaches one. In the limit, as σs goes to zero, our model converges to the
complete information model of Guo et al. (2005) (with the extension to allow
for disinvestment). The investment boundary is then characterized by two
distinct threshold values of k/x, a higher one for the good state and a lower
one for the bad state. A similar intuition explains why the disinvestment
boundary becomes more concave as σs decreases.
Instantaneous Demand Volatility. Panels (c) and (d) show the effects of
instantaneous demand volatility (σx) on the disinvestment and investment
boundaries, respectively. An increase in σx has two effects, both confirmed
by the figures. First, it reduces the information quality of an individual
firm’s demand as a signal. This is similar to the effects of an increase in σx.
It reduces the nonlinearity of both boundaries. Second, a lower volatility
of demand implies that capital stock needed today is less likely to turn
into excess capacity tomorrow, and vice versa. Therefore, the firm is less
hesitant to both invest and disinvest. As a result, the investment boundary
shifts upward, the disinvestment boundary shifts downward, and the inaction
region becomes narrower.
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Reversibility. The degree of investment reversibility is determined by the
gap between the purchase price and the resale price of capital. Since we
fix the purchase price of capital at 1, the resale price, b, characterizes the
liquidity of capital assets and the reversibility of investment, with b = 1
defining perfect reversibility and b = 0 defining perfect irreversibility.

The case of perfect reversibility serves as a good benchmark. If invest-
ment is perfectly reversible, firms adjust capital stock instantaneously to
any level appropriate for the realized demand factor, because both upward
and downward adjustments are costless. The belief about future growth rates
becomes irrelevant. The optimal capacity is determined by the classical op-
timality condition of Jorgenson (1963), i.e., the equality of the marginal

revenue product of capital (∂f∂k ) and the user cost of capital, which in our
case is simply r + ξ. Using Equation (1), this optimality condition leads to:

k

x
= (r + ξ)−

1
α . (12)

Since firms maintain capacity constantly at this optimal ratio, the capital
growth rate is identical to the growth rate of the demand factor.

Panels (e) and (f) of Figure 3 show the effects of reversibility on the dis-
investment and investment boundaries, respectively. Not surprisingly, with
a higher degree of reversibility (a high b), firms invest and disinvest more
actively. Therefore, the disinvestment boundary shifts downward and the
investment boundary shifts upward, leading to a narrower inaction region.
Furthermore, both boundaries become flatter, suggesting less sensitivity of
the investment/disinvestment decision to the state of the economy. For the
perfect reversibility case (b = 1), investment and disinvestment boundaries
collapse into one, and the combined boundary is perfectly flat (i.e., indepen-
dent of the belief), at a value implied by Equation (12).20

4. Capital Growth Rates: Simulated versus Empirical

4.1 SIMULATION APPROACH

The investment/disinvestment boundaries, together with a firm’s position
within these boundaries, determine the reaction of its normalized capacity
to innovations in demand and beliefs. At the aggregate level, the speed of
capital adjustment depends crucially on the distribution of firms’ normalized
capacities relative to the boundaries, which is endogenously determined by
the history of demand shocks and firms’ investment activities.

20 Based on the values of r, ξ and α in Table 1, the optimal normalized capacity (k/x) in
this case is 11.30.
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To examine the dynamics of the capital growth rate in our model, we use
Monte Carlo simulations. We simulate a panel of 1000 firms over a time
horizon of 57 years.21 We drop the first 20 years so that the results are not
affected by initial conditions (firms are distributed evenly on the investment
boundary initially), and use the remaining 37 years for our analysis. We
choose such a time horizon to match the length of our empirical sample,
which covers the time period from 1975 through 2011. We assume the latent
macroeconomic regime follows the sequence of business cycles observed over
the 57 years ending in 2011, according to the NBER. Effectively, we examine
how firms behave in our model if the macroeconomic regime follows the
particular sample path that we observe ex post for the 1955–2011 period.

Each firm observes its own sequence of randomly generated demand fac-
tor xt, and a common public signal process st, forms its beliefs about the
macroeconomic state, and invests/disinvests according to the optimal policy
derived in Section 3.. The demand factors are correlated across firms due
to their correlations with the common signal. Their innovations are jointly
normally distributed. The parameter values are taken from Table 1 unless
otherwise noted. We then examine the path of the average capital growth
rate around the turning points of the business cycle, and calculate various
skewness measures of the capital growth rate at the firm and aggregate lev-
els. We repeat our simulations for 100 rounds, and compare the average
results across these rounds to the empirical data.

4.2 AVERAGE CAPITAL GROWTH RATE OVER THE BUSINESS CYCLE

Figure 4 shows the simulated equal-weighted average capital growth rate
during the recession and the expansion, along with the empirical estimate
reproduced from Panel (a) of Figure 1.22 Panel (a) shows the results for the
base case, as well as the case of (almost) complete information, in which all
parameter values are at the base level except that the volatility of the public
signal, σs, equals 0.005 instead of 0.25.

Our simulated capital growth rate under the baseline parameterization
features a sharp decline at the beginning of the recession, and a slower re-
covery during the expansion. Although the recovery is still faster than em-
pirically observed, overall the simulated curve matches the empirical curve
reasonably well. The simulation under complete information shows a more
dramatic decline and an immediate rebound, both much too sharp to be
reconciled with the empirical curve. When information is complete, optimal

21 The results are similar if we increase the number of firms in the simulation.
22 As in Figure 1, the capital growth rate is averaged first across firms and then across
business cycles.
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(a) Average capital growth rate: Base case vs. complete information
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(b) Average capital growth rate: Lower gap between µh and µl

Fig. 4: Mean capital growth rate over the business cycle. Panel (a)
shows the simulated average quarterly capital growth rate during the reces-
sion (left diagram) and the expansion (right diagram) for both the base case
and the complete information case, along with the empirical growth rate.
In Panel (b), we set µh and µl at half of their base values and keep other
parameter values unchanged (σs equals 0.25 in the incomplete information
case, and 0.005 in the complete information case.) Quarter 0 is the business
cycle peak in the left diagrams, and is the trough in the right diagrams.

capacity jumps immediately from one end of the investment boundary to
the other as the macroeconomic regime switches. The sudden change of the
optimal capacity leads to a dramatic change in the average capital growth
rate at both regime switching points. When information is incomplete, the
capital growth rate is smoother because of the time needed for learning.
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The difference in the capital growth rate between recession and expan-
sion is obviously driven by the gap between the expected demand growth
rates of these two states, µh − µl. A smaller gap makes the transition less
dramatic, and potentially allows the complete information model to fit the
empirical data better. To explore this possibility, we set µh and µl at half
of their empirically estimated base values, and keep other parameter values
unchanged. The results, plotted in Panel (b) of Figure 4, show that this
alternative parameterization leads to an average capital growth rate that is
too smooth over the business cycle compared to the empirically observed
one. In particular, it is too low at the peak, with or without complete in-
formation. Furthermore, even with the smaller gap between µh − µl, the
transition between business cycle regimes is still too abrupt under complete
information.

4.3 DISTRIBUTION OF NORMALIZED CAPITAL OVER THE BUSINESS CYCLE

The reason for the asymmetry of decline and recovery in our baseline model
is the endogenous distribution of firms relative to their optimal capacities.
Since demand grows fast during the expansion, a large proportion of firms
are pushed to the investment boundary at the end of an expansion. These
are the marginal firms that react to changes in beliefs. When a negative
signal comes, their optimal capacities decrease, and they stop investment
immediately, generating a sharp decline in the average capital growth rate.

By contrast, at the end of a recession, not only is the optimal capacity
relatively insensitive to a modest improvement in the belief, the proportion
of firms that are close to the investment boundary is low because of the
low demand growth. For firms that are far from the investment boundary,
investment is not optimal even if their beliefs change significantly upon the
arrival of a positive signal — the capacity they have accumulated during
the recession is too high even compared to the high end of the investment
boundary. Consequently, the overall reaction to the positive signal is small,
and the recovery is slow.

To illustrate this point more clearly, we present histograms of simulated
normalized capital (k/x) at two turning points of a business cycle in Figure
5. Panels (a) and (b) show the distributions at the end of an expansion
and a recession, respectively. One can see clearly that in Panel (a) firms
are more concentrated along the investment boundary, while in Panel (b)
they are much more dispersed, indicating a larger proportion of firms with
excess capacity. The proportion of firms at the disinvestment boundary is
very small in both panels, indicating that firms in general are very reluctant
to disinvest due to the discounted capital resale price.
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(b) At the end of a recession

Fig. 5: Histograms of normalized capital: Expansion vs. recession.
This figure shows the histograms of simulated normalized capital (k/x) at
two turning points of a business cycle: at the end of an expansion (Panel
(a)) and at the end of a recession (Panel (b)). The parameter values used
for the simulation are in Table 1.

5. Skewness of Capital Growth Rates

To further gauge the empirical plausibility of our model, we examine the
skewness of capital growth rates, both at the individual firm level and in the
aggregate.

5.1 BASE CASE

Figure 6 compares the simulated results in the base case with their empirical
counterparts (reproduced from Figure 2). Panels (a) and (b) show, respec-
tively, the skewness values for the levels and slopes of average capital growth
rates measured over time intervals varying from one to ten quarters. Pan-
els (c) and (d) show the average skewness values for the levels and slopes,
respectively, of capital growth rates of individual firms. To gauge the mag-
nitude of simulation errors, we plot both the point estimates of the skewness
values and their 90% confidence intervals for the simulated data.23

At the aggregate level, our model generates the negative skewness in both
the level (Panel (a)) and the slope (Panel (b)) of the average capital growth
rate observed in the data. The estimated skewness values for both the level
and the slope are non-monotonic in the length of time interval over which the
growth rate is measured, first decreasing and then slowly increasing, as in

23 The point estimate is the simple average across 100 rounds of simulations, and the
standard error is the standard deviation divided by

√
100.
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growth rates

Fig. 6: Skewness of capital growth rates: Empirical vs. simulated.
Panels (a) and (b) show, respectively, the skewness values for the levels
and slopes of average capital growth rates measured over time intervals
varying from one to ten quarters. Panels (c) and (d) show, respectively,
the average skewness values for levels and slopes of capital growth rates of
individual firms. The dashed lines indicate the 90% confidence intervals of
the skewness estimates for the simulated data. The parameter values used
for the simulation are in Table 1.

the empirical data. At the firm level, however, the simulated capital growth
rate is strongly positively skewed in the level (Panel (c)), and has virtually
no asymmetry in the slope (Panel (d)), again mimicking what we empiri-
cally observe. The positive level asymmetry is highest when the growth rate
measured over one quarter, and deceases steadily as the measurement inter-
val lengthens, but remains positive even when the measurement interval is
ten quarters. These results demonstrate that our model is able to replicate
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the main empirical features of capital growth rates at both the firm and
aggregate levels.

The positive level skewness at the firm level is a natural outcome of costly
reversibility, which makes firms reluctant to disinvest.24 Capital is built up
for specific uses, and is therefore often highly illiquid in nature. Frictions in
the secondary markets further increase the difficulty of reallocating capital
from one firm to another. As a result, on the upside, firms may expand
capital stock rapidly; yet on the downside, the decrease of capital stock
normally occurs only at the rate of depreciation due to firms’ unwillingness
to sell capital at a discount. This leads to the positive skewness of the firm-
level capital growth rate. However, the slope is largely symmetric, because
an individual firm hits the investment boundary and returns to the inaction
region at the same speed.

The negative level asymmetry of average capital growth rates arises be-
cause expansions usually last longer than recessions. This asymmetry of du-
ration implies that most of the short-run growth rate observations are drawn
from expansion periods, which lie to the right of the mean. The relatively
small number of observations drawn from recession periods then form a long
tail at the left side of the distribution, resulting in negative skewness.25

The negative slope asymmetry of the average capital growth rate is a key
indicator of the sharp-decline-slow-recovery feature of corporate investment.
As we discuss in Section 4.3, this results from the endogenous distribution
of firms relative to their optimal capacities over the business cycle. More
firms are close to the investment boundary during an expansion than during
a recession. Therefore, more firms react to a negative signal arriving during
an expansion than to a positive signal arriving during a recession. As a
result, downturns are sharper upturns at the aggregate level, even though
the slope at the firm level is symmetric.

5.2 REVERSIBILITY AND INDUSTRY INVESTMENT SLOPE ASYMMETRY

A key friction in our model is costly reversibility of capital investment, i.e.,
the illiquidity of capital assets. If capital assets can be liquidated at low costs
(i.e., b is close to 1), then firms will not build up much excess capacity in
the recession. This would allow them to respond quickly as economic signals

24 Quantitatively, the positive skewness of the simulated firm-level capital growth rate
appears too high. This is due to our assumption that firms can add capital instantaneously
with zero adjustment costs. Introducing some adjustment costs for capital expansion will
make the positive skewness less pronounced.
25 A more technical explanation for the opposite signs of the skewness values of the average
and the firm-level capital growth rates is provided in Appendix A.5.
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become more positive. Therefore, we expect the decline and recovery of the
average capital growth rate to be more symmetric if capital is more liquid.

Panel (a) of Figure 7 confirms this intuition. In the figure, we plot the
skewness values of the differenced average capital growth rates measured
over various time horizons for different values of reversibility: b = 0.5, 0.8
(base case), 0.9, and 1.0 (perfect reversibility). The difference between the
cases of b = 0.8 and b = 0.5 is negligible. In fact, even for b = 0, in which
investment is completely irreversible, the results are still very similar to
those in the base case. This suggests that a discount of 20 percents in the
resale price of capital is sufficient to capture the main effect of irreversibility
in our model. However, as b increases from 0.8 to 0.9, the skewness val-
ues become less negative for all time horizons. For b = 1.0, the skewness
even becomes positive for most time horizons.26 These results suggest that
higher reversibility reduces the slope asymmetry of investment at the aggre-
gate level. They also demonstrate that the slope asymmetry does not arise
mechanically from the assumed Markov regime-switching process. A certain
degree of irreversibility is necessary to generate the fast decline and slow
recovery in our model.

Panel (b) of Figure 7 provides some empirical support for the connection
between the aggregate level slope asymmetry and the degree of irreversibil-
ity, using data from nine of the ten Fama-French industries27 We measure
investment reversibility at the industry level by the activeness of secondary
market capital reallocation. The assumption is that if secondary market re-
allocation is active, then capital is more liquid, and investment reversibility
is high. Following Eisfeldt and Rampini (2006), we measure industry-wide
capital reallocation by the sum of acquisitions and sales of property, plant,
and equipment (Compustat items AQC and SPPE, respectively), and scale
it by the industry capital expenditures (CAPX in Compustat). We calculate
this reallocation ratio for each industry year by year from 1971 to 2011 (AQC
and SPPE data are not available from Compustat for earlier years), and use
the time series average as a measure of industry capital asset liquidity.

To measure the industry-level investment slope asymmetry, we calculate
industry-level average capital growth rates over different time intervals, from
one to five quarters, using quarterly data from 1975 through 2011. We then
take a first-order difference of each series and estimate the skewness of the
differenced series. We use the average of skewness values estimated from

26 Appendix A.5 shows analytically why the slope of the average capital growth rate is
symmetric under perfect reversibility using a discrete version of our model.
27 We exclude the utility industry, and exclude financial firms from the “Other” industry.
We use the ten-industry instead of a finer classification to make sure that each industry
has a sufficiently large number of firms to reveal the aggregation effects.
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Fig. 7: Reversibility and industry-level slope asymmetry. Panel (a)
shows skewness values of the simulated differenced average capital growth
rate, measured over various time horizons, for different degrees of reversibil-
ity. The resale price of capital (b) varies from 0.5 (low reversibility), 0.8 (base
case), 0.9 (high reversibility), to 1.0 (perfect reversibility). Other parameter
values are given in Table 1. Panel (b) shows the empirical relation between
the skewness of the differenced industry-level capital growth rate and asset
liquidity for nine of the ten Fama-French industries.

the five differenced series as a summary measure of the industry-level slope
asymmetry.

Panel (b) of Figure 7 plots the average skewness value against asset liq-
uidity industry by industry. Consistent with the prediction of our model, the
graph shows clearly that the slope asymmetry is most prominent in indus-
tries with low asset liquidity (Oil, Gas and Coal; Telephone and Television
Communication). For industries with high asset liquidity (Consumer Non-
durables and Healthcare), the skewness of the slope is either zero or positive.
A univariate regression of the slope skewness on asset liquidity produces a
positive coefficient of 2.36 with a t-statistic of 3.18.

6. Extensions

We extend our model to allow for two possibilities, procyclical depreciation
and countercyclical financing frictions.
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Fig. 8: Investment/disinvestment boundaries: Stochastic depreci-
ation and financing frictions. Panels (a) and (b) show, respectively,
the disinvestment and investment boundaries for the procyclical depreci-
ation case (ξ0 = 10%, and aξ = 3%). Panels (c) and (d) show, respectively,
the disinvestment and investment boundaries for the countercyclical financ-
ing frictions case (aξ = 0.025). For comparison, the base case results (solid
curves) are also shown in each panel.

6.1 PROCYCLICAL DEPRECIATION RATE

Capital depreciation rates, especially in economic instead of accounting
terms, may be higher in expansion than in recession, because technologies
develop faster when the economy is booming. To allow for the possibility of
a procyclical depreciation rate, we specify the following functional form for
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(b) Financing frictions and slope asymmetry

Fig. 9: Slope asymmetry in the aggregate: Stochastic depreciation
and financing frictions. This figure shows the skewness of the first-order
differences of average capital growth rates measured over different time hori-
zons (from one quarter to ten quarters). Panel (a) compares the results
from the stochastic depreciation case (ξ0 = 10%, and aξ = 3%) with those
from the benchmark case, as well as the empirical estimates. Panel (b) com-
pares results from the countercyclical financing frictions case (aξ = 0.05)
with those from the benchmark case, as well as the empirical estimates.

capital depreciation:

ξ = ξ0 + aξπ, (13)

where ξ0 is the depreciation rate in a recession, and aξ > 0 is a constant
governing the sensitivity of depreciation to the belief π, which is stochastic
and path-dependent. For the purpose of illustration, we set ξ0 = 10%, and
aξ = 3%, and keep other parameters at their base values. Since no additional
state variable is introduced, this extended model can be solved with minor
modifications of our numerical procedure.

Panels (a) and (b) of Figure 8 show that when the depreciation rate is
procyclical, the disinvestment boundary becomes flat and the investment
boundary becomes a downward sloping function of the belief π. This is
because higher depreciation reduces the marginal value of capital during
an expansion. Therefore, the optimal capacity, normalized by the realized
demand factor, is lower in expansion than in recession. Similarly, the firm
is now more willing to reduce capital during an expansion than in the base
case.

Panel (a) of Figure 9 shows the effects of the procyclical depreciation rate
on the slope asymmetry of the average capital growth rate. It shows that the
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slope asymmetry is stronger in the extended model than in either the base
case or the empirical data. This is because the higher depreciation associated
with a higher π reduces firms’ incentives to invest at the beginning of an
expansion, which further slows down the recovery, and amplifies the slope
asymmetry.28

6.2 FINANCING FRICTIONS

Another important factor potentially affecting the dynamics of investment
is the costs of raising external finance. Financing frictions are especially
severe during a recession, when both financial intermediaries and investors
are reluctant to lend or invest. To investigate the impact of financing frictions
as parsimoniously as possible, we introduce an equity issuance cost φ, which
is a function of a firm’s path-dependent belief π. We normalize this cost
to zero during an expansion, and assume that it increases linearly with the
posterior probability of being in a recession (1− π). Specifically,

φ(π) = aφ(1− π), (14)

where aφ is a constant specifying the cost of raising $1 equity during a
recession. Since firms in our model do not hold any cash, the effective cost
of investing is 1 + φ(π), i.e., the normalized price of capital plus the financing
costs. Following Bolton et al. (2011), the value-matching condition at the
investment boundary then becomes

lim
k→xh∗i

∂V

∂k
= 1 + aφ(1− π),

or equivalently,

lim
h→h∗i

∂v(h, π)

∂h
= 1 + aφ(1− π).

This extended model can also be solved relatively easily, because h and
π are still the only two state variables. For the purpose of illustration, we
set aφ = 0.025, and keep the other parameters at their base values. Fig-
ure 8 shows that with financing frictions, the investment boundary (Panel
(d)) increases more sharply with the belief π than in the base case, while
the disinvestment boundary (Panel (c)) shifts upward slightly. Financing

28 Because the investment boundary is downward sloping in π in the extended model
with a procyclical depreciation rate, we find that under complete information, the average
capital growth rate, counterfactually, shoots up sharply at the beginning of a recession,
and jumps down abruptly at the beginning of an expansion.
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frictions further reduce firms’ incentives to invest during a recession, gener-
ating a steeper investment boundary. At the same time, financing frictions
also make firms slightly more reluctant to cut capital. By tolerating a larger
amount of excess capital, firms can reduce the probability of paying financing
costs in the future.

While these results on the effects of financing frictions make perfect eco-
nomic sense, the extended model does not seem to generate a better em-
pirical fit. As Panel (b) of Figure 9 shows, in general the model with coun-
tercyclical financing frictions generates less asymmetry in the slopes of the
average capital growth rate, especially when the growth rate is measured
over relatively short time horizons.

Why do countercyclical financing frictions not help to explain the slope
asymmetry in our model? One reason is that they increase and decrease at
the same speed. If we assume that financing frictions increase sharply as
the economy enters a recession, and decrease slowly during a recovery, the
slope asymmetry of the aggregate investment would be amplified. While this
assumption may be realistic, it is not very appealing as it is linked almost
mechanically to the empirical facts we set out to explain. We therefore leave
it for future research.

7. Conclusion

The sharp decline of corporate investment after a negative macroeconomic
shock and its slow recovery thereafter are at the center of many recent pol-
icy discussions. We provide a micro-founded explanation for this asymmetry,
accounting for new empirical evidence on the asymmetries of capital growth
rates at the aggregate and firm levels. Our dynamic investment model fea-
tures various degrees of reversibility, cyclical macroeconomic shocks, and
uncertainty about the true state of the economy.

In our baseline model, we show that a firm’s optimal investment threshold,
defined in terms of a lower bound on the firm’s capital normalized by the
demand factor, is a convex function of its posterior belief that the economy
is in an expansion. Monte Carlo simulations of a large panel of firms fac-
ing heterogeneous shocks generate patterns that match the empirical data
remarkably well at both the firm and aggregate levels. In particular, the sim-
ulated average capital growth rate features both a negative slope asymmetry
and a negative level asymmetry, while the capital growth rate at the firm
level features no slope asymmetry and a positive level asymmetry. Further-
more, the aggregate level slope asymmetry is more severe when the degree
of investment reversibility is lower.
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Our model provides a new perspective on understanding firms’ investment
behavior, and has clear policy implications. A key friction leading to slow
recovery is incomplete information about the macroeconomic state. Policies
that help to reduce such uncertainty can boost investment by reducing the
option value of waiting. One example is a central bank’s announced com-
mitment to a certain interest rate policy. Other examples include legislation
reducing the uncertainty of future government budget and tax policies. An-
other key friction in our model is costly reversibility, i.e., the illiquidity of
physical capital. Policies that facilitate the reallocation of capital in the
secondary markets, either through merger and acquisition or through as-
set sales, can reduce the excess capacity of firms facing unfavorable shocks,
which in turn would boost investment as the macroeconomic climate im-
proves.

One limitation of our model is that it abstracts from the feedback effects of
firm investment on product and capital prices. Analysis based on reduced-
form specifications of capital price shows that the recovery of investment
activity in the upturn is further delayed if the price of capital is procyclical
in our model. Therefore, accounting for the general equilibrium effect of
investment on capital price can potentially improve the empirical fit, but
is unlikely to change our basic results. We view this line of extension as a
fruitful avenue for future research.

Appendices

A.1 ALTERNATIVE FORMULATION OF THE OPTIMAL UPDATING RULE

Equation (5) can be rewritten as:

dπt = [−πtλh,l + (1− πt)λl,h]dt

+
(µh − µl)πt(1− πt)

σ2
w

(
d ln(xt)− Et(µt|Ft)dt
d ln(st)− Et(µt|Ft)dt

)
(A1)

where

σ2 ≡ 1

1′(ΦΦ′)−11
, (A2)

w ≡ 1′(ΦΦ′)−1

1′(ΦΦ′)−11
=

(
σ2
s − ρσxσs

σ2
x + σ2

s − 2ρσxσs
,

σ2
x − ρσxσs

σ2
x + σ2

s − 2ρσxσs

)
. (A3)

Note that ΦΦ′ is simply the instantaneous variance-covariance matrix of
d ln(xt) and d ln(st). Readers familiar with the classic mean-variance port-
folio analysis will immediately recognize that σ2 is the minimum instanta-



36 THOMAS DANGL and YOUCHANG WU

neous variance that can be obtained using all possible linear combinations
of d ln(xt) and d ln(st), while w specifies the weights of each individual sig-
nal in the minimum variance combination. This formulation thus reveals an
important feature of the Bayesian learning process. When there are multiple
jointly normally distributed signals, the agent can form a minimum variance
“portfolio” of all the available signals, and base learning on this compound
signal.

The standard deviation of this optimally constructed compound signal,
σ, measures the noisiness of the overall information of all the signals. The
learning Equation (5) thus implies a stronger response to forecasting errors
is when signals are more precise. Furthermore, by the nature of the minimum
variance portfolio, the optimal weighting vector w assigns more weight to
the signal with lower variance, indicating that agents pay more attention
to the signal that has less noise. In particular, when σs = ρσx, the optimal
weight of d ln(xt) in the compound signal is zero. Learning is based entirely
on the signal d ln(st).

A.2 PROOF OF PROPOSITION 2

Consider firm value V as a claim on the firm’s operating profit as a func-
tion of its current demand factor x, the installed capital k, and the be-
lief about the current state of the economy π, i.e., V = V (x, k, π). For the
risk-neutral decision maker, the value function must satisfy the following
Hamilton-Jacobi-Bellman equation:

rV (x, k, π)dt = f(x, k) dt+ E(dV (x, k, π)|Ft) (A4)

The expectation of dV is to be determined by Itô’s lemma using the Ft-
dynamics of the state variables x, k, and π. Note that since dWF

xt and dWF
st

are uncorrelated, we have

dx = x(πµh + (1− π)µl +
1

2
σ2
x)dt+ xσxdW

F
xt,

(dπ)2 = dπ(dπ)′

= [π(1− π)(µh − µl)]2
[
1′(Φ′)−1dWF

t

] [
1′(Φ′)−1dWF

t

]′
= [π(1− π)(µh − µl)]2

1

σ2
dt,

dx dπ = dx (dπ)′

= xπ(1− π)(µh − µl)
[
(1, 0) ΦdWF

t

] [
1′(Φ′)−1dWF

t

]′
= xπ(1− π)(µh − µl)dt.
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Therefore, in the inaction region, where dk = −ξkdt, we have:

E[dV (x, k, π)|Ft] =

[
−∂V
∂k

ξk +
∂V

∂x
x[πµh + (1− π)µl +

1

2
σ2
x]

+
1

2

∂2V

∂x2
x2σ2

x +
∂V

∂π
[−πλh,l + (1− π)λl,h]

+
1

2

∂2V

∂π2
[π(1− π)(µh − µl)]2

1

σ2

+
∂2V

∂x∂π
xπ(1− π)(µh − µl)

]
dt.

Substituting this expression into the Hamilton-Jacobi-Bellman Equation
(A4) and dropping dt from both sides of the equation yields

rV =
1

1− α
xαk(1−α) − ∂V

∂k
ξk + x[πµh + (1− π)µl +

1

2
σ2
x]
∂V

∂x

+
1

2
x2σ2

x

∂2V

∂x2
+ [−πλh,l + (1− π)λl,h]

∂V

∂π
(A5)

+
[π(1− π)(µh − µl)]2

2σ2

∂2V

∂π2
+ xπ(1− π)(µh − µl)

∂2V

∂x∂π

The last part of the proof to show that writing V (x, k, π) as V = xv(h, π)
with h = k

x gives Equation (9). This is done by substituting the partial
derivatives below in Equation (A5):

∂V

∂k
=
∂v(h, π)

∂h
,

∂V

∂x
= v(h, π)− h∂v(h, π)

∂h
,

∂2V

∂x2
=

1

x
h2∂

2v(h, π)

∂h2
,

∂V

∂π
= x

∂v(h, π)

∂π
,

∂2V

∂π2
= x

∂2v(h, π)

∂π2
,

∂2V

∂x∂π
=
∂v

∂π
− h∂

2v(h, π)

∂x∂π
.

A.3 CALIBRATION

We use the annual Compustat-CRSP merged database over 1950-2011 to
estimate most of our paramters. Note that from Equation (1) we can back
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out a firm’s demand factor xt using its operating profit f(xt, kt) and capital
stock kt:

xt =

[
(1− α)f(xt, kt)

k1−α
t

]1/α

. (A6)

This formula allows us to compute xt for each individual firm in each year.
We measure f(xt, kt) by operating income before depreciation (OIBDP),
and kt by operating assets (defined as total assets (AT) minus cash and
short-term investment (CHE)), all converted into year 2005 dollar values
using the annual GDP deflator.29

Using the estimated xt series, we calculate the continuously compounded
annual growth rate of xt at the firm level, and winsorize it at the top and
bottom 2.5% of each sample year. We then average it across firms, weighted
by the lagged operating asset value. This gives us a time series of 61 annual
observations. We apply the Expectation-Maximization (EM) algorithm de-
veloped by Dempster et al. (1977) to estimate the parameters of the hidden
Markov chain: λh,l, λl,h, µh, µl.

Our estimates of the transition intensities imply an expected length of 3.9
years (= 1/0.2557) for an expansion and 1.4 years (= 1/0.7163) for a reces-
sion. The estimated πt series matches the NBER-dated business cycles very
well, as shown in Figure 10, where we plot the time series of the estimated
average demand factor growth rate and the posterior beliefs πt. The bars
indicate the historical recession periods according to the NBER.

The depreciation rate ξ is estimated using the median value of the ratio
of depreciation of tangible fixed assets (DFXA) to the lagged PPENT. For
the instantaneous volatility of the demand factor, σx, we regress the annual
demand growth rate on an NBER recession dummy firm by firm (requiring
firms to have at least 25 annual observations), and use a simple average of
the root mean squared errors of these regressions as its estimate.

The other parameter values are set as follows. We set the instantaneous
volatility, σs, of the public signal to be 0.25. This allows us to capture
the idea that there is a significant amount of uncertainty about the true
economic state. If this value is too small, then learning will be too fast to

29 We set α = 0.74, along the line of Guo et al. (2005). The operating profit function
(1) approximates the following specification: (1) Constant returns to scale Cobb-Douglas
production function with labor and capital: q = λLφK1−φ; (2) Isoelastic demand function
given by the inverse demand curve: p = x1−θqθ−1, where 0 < θ < 1. It follows from this
specification that the share of profits going to capital depends on θ and φ through the
relation: 1− α = (1− φ)θ/(1− θφ). Labor’s share of national income in the U.S. since
World War II is relatively stable at φ = 0.64. Assuming θ = 0.5, we get α ≈ 0.74. Guo
et al. (2005) obtain α ≈ 0.53 due to a typo in their expression for 1− α.
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Fig. 10: Growth rate of demand factor and posterior probability
of expansion. The upper part shows the time series of the posterior belief
π estimated using the EM algorithm. The bottom part (axis on the right)
shows the average continuously-compounded annual growth rate of the de-
mand factor x, estimated using the Compustat-CRSP merged database. The
bars indicate the recession periods dated by the NBER.

have a significant impact. The risk-free rate, r, is 0.05. The resale price
of capital, b, is 0.80. The instantaneous correlation, ρ, between the public
signal and the firm’s demand factor is 0.05. Experiments show that the
main features of our results are fairly robust to alternative values of these
parameters.

A.4 NUMERICAL OPTIMIZATION OF BOUNDARIES

We solve the Hamilton-Jacobi-Bellman equation (9) with the boundary con-
ditions by solving numerically the underlying stochastic dynamic program-
ming problem. We discretize (A4) as

V (x, f, π)∆t = f(x, k)∆t+ e−r∆tE[V (x+ ∆x, k + ∆k, π + ∆π)],
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and use its homogeneity property in k to write the program in terms of
Tobin’s average Q:

V (x, t, π) = kV (x/k, 1, π) = kQ(g, π),

with g = x/k. Since in the inaction region, where the firm neither invests
nor disinvests, capital, k, is constant, gt is just a scaled version of xt there.

In the investment region, we set Tobin’s marginal Q equal to 1 (the pur-
chase price of capital), and in the disinvestment region we set it equal to b
(the resale price of capital). We derive

∂

∂k
[V (x, h, π)] =

∂

∂k

[
k Q

(x
k
, π
)]

= Q(g, π)− g∂Q(g, π)

∂g
.

Hence, for given investment and disinvestment boundaries g∗i (π) and g∗d(π),
respectively, the value function inside the action regions is set according to

Q(g, π) =
g

g∗i (π)
Q(g∗i (π), π)− g − g∗i (π)

g∗i (π)
, for g > g∗i (π),

Q(g, π) =
g

g∗d(π)
Q(g∗d(π), π)−

g − g∗d(π)

g∗d(π)
b, for g < g∗d(π).

Inside the inaction region, we model the joint dynamics of g and π as a
two dimensional binomial tree. The difficulty in doing so is that π follows a
mean reversion process with non-constant volatility. Therefore, we employ
the approach of Nelson and Ramaswamy (1990). Consider the process

Z(π) =

∫ π

1
2

σ

(µh − µl)p(1− p)
dp =

σ

µh − µl
ln

(
π

1− π

)
,

where σ is defined as the positive square root of σ2 in Equation (A2).
Then the process zt = Z(πt) has a constant volatility of 1 and follows the

dynamics

dz =

[
µπ
dZ(π)

dπ
+

1

2
σ2
π

d2Z(π)

dπ2

]
︸ ︷︷ ︸

µz

dt+ σ1′(Φ′)−1dWF
t︸ ︷︷ ︸

dWF
zt

,

z0 = Z(π0),

where σπ is the volatility and µπ is the drift of the belief (see Proposition
1) given by

σπ =
(µh − µl)π(1− π)

σ
,

µπ = −πλhl + (1− π)λlh,
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and WF
zt is a standard Brownian motion. Consequently, zt and gt can be

modeled on a two-dimensional binomial tree following Boyle et al. (1989),
taking into account the correlation of the two processes that is implicitly
given. Then, the belief process π results from applying the inverse, πt =
Z−1(zt), which is given by

Z−1(z) =
1

1 + exp
{
−
(µh−µl

σ

)
z
} .

The optimization of the free boundaries g∗i and g∗d is achieved via value
function iteration with the goal to have Q(g, π) smooth at the boundaries,
which implies that Tobin’s marginal Q converges to 1 when moving from
the inaction region to the investment boundary, and that it converges to b
when moving from the inaction region to the disinvestment boundary.

The boundaries discussed in the text, h∗i and h∗d, are calculated simply by

h∗i =
1

g∗i
, h∗d =

1

g∗d
.

A.5 RELATION BETWEEN AVERAGE SKEWNESS AND SKEWNESS OF THE
AVERAGE

Let ci denote the de-meaned capital growth rate of firm i over one period, and
assume that the unconditional moments of firms are identical. The skewness
of the average over the capital growth rate of N > 2 firms can be written as

Skew(
1

N

N∑
i=1

ci) = E

[
( 1
N

∑N
i=1 ci)

3

[σ( 1
N

∑N
i=1 ci)]3

]

=

1
N3

[
NE[(ci)

3] + 3N(N − 1)Ei 6=j [c
2
i cj ] + 6N(N−1)(N−2)

3! Ei 6=j 6=k[cicjck]
]

1
N3

[
NE[c2

i ] +N(N − 1)Ei 6=j [cicj ]
]3/2 ,

where σ(.) denotes the standard deviation. This equation shows that the
skewness of the average is determined by (1) the skewness of an individual
firm E[(ci)

3]; and (2) co-skewness terms Ei 6=j [c
2
i cj ] and Ei 6=j 6=k[cicjck]. As

N increases, the first component becomes less and less important, and the
second component becomes dominant.

If capital growth rates of individual firms are skewed, but are independent,
then the co-skewness terms are zero (i.e., Ei 6=j [c

2
i cj ] = Ei 6=j 6=k[cicjck] = 0),

so is Ei 6=j [cicj ] as well. Asymptotically, the skewness of the average capital
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growth rate is then

lim
N→∞

Skew(
1

N

N∑
i=1

ci) = lim
N→∞

NE[(ci)
3][

NE[c2
i ]
]3/2 = 0. (A7)

When capital growth rates are correlated, the asymptotic behavior of
the average is determined by the N(N − 1)(N − 2) co-skewness terms in
the numerator, Ei 6=j 6=k[cicjck], and the N(N − 1) covariance terms in the
denominator, Ei 6=j [cicj ]:

lim
N→∞

Skew(
1

N

N∑
i=1

ci) =
Ei 6=j 6=k[cicjck]

(Ei 6=j [cicj ])
3/2

. (A8)

Thus, when we take an average across a set of positively skewed inde-
pendent and identically distributed random variables, the skewness of the
average vanishes as the number of random variables increases; i.e., the gen-
eral central limit theorem is at work, and the average becomes more and
more normal. To make the average of positively skewed variables negatively
skewed, a model needs an appropriate structure that generates negative co-
skewness. Our model provides such a structure. Since the business cycle is
a common factor and since it is negatively skewed (expansions on average
last longer than recessions, implying that recessions are farther below the
long-run mean than expansions are above it), the absolute value of cicjck is
on average bigger when the three terms involved are all negative than when
they are all positive, thus the sum of co-skewness terms is negative.

While the argument above explains the opposite level asymmetries at the
aggregate and firm levels, it is important to note that imposing a negatively
skewed common factor does not necessarily lead to a negative slope asym-
metry at the aggregate level. When investment is perfectly reversible, it can
be shown that the slope of the capital growth rate is asymptotically sym-
metric at both the firm and aggregate levels. To get the intuition for this
result, consider a discrete version of our model, in which regime switches
occur only at the quarter end.

Consider first a single firm. The probability of switching from a high-
growth to a low-growth state is Phl = 1− e−0.25λhl , and the probability of
the opposite switch is Plh = 1− e−0.25λlh . Since the demand growth rate
is normal within each regime, and the local volatility is the same in both
regimes, the asymptotic distribution of changes in the quarterly demand
growth rate is then a mixture of three normal distributions with the same

standard deviation (
√

2
2 σ) but different means: 0 (no switch), 0.25(µl − µh)

(a switch from low growth to high growth), and 0.25(µh − µl) (an opposite
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switch). Given the unconditional probability of each regime ( Plh
Plh+Phl

for

high growth, and Phl
Plh+Phl

for low growth), the probability of the distribution

with mean 0 is 1− 2PlhPhl
Plh+Phl

, while the probability of each of the other two is
PlhPhl
Plh+Phl

. This symmetric mixture of three normals is obviously symmetric.
Since the capital growth rate is identical to the demand growth rate under
perfect reversibility, this result explains why the capital growth rate at the
firm level has zero skewness in the slope.

The average capital growth rate is also normal within each regime, and has
the same local volatility under both regimes. This is true because within each
regime it is a linear combination of N identically distributed, jointly normal
random variables. The same argument above implies that the distribution of
the change in the average quarterly capital growth rate is also a symmetric
mixture of three normals, and is therefore symmetric.

The logic for the perfect reversibility case does not hold when investment
is irreversible or reversible only at a cost. In the presence of such frictions, the
capital growth rate, either at the firm level or in the aggregate, is no longer
a mixture of normals due to the existence of an inaction region, even though
the demand growth rate is. A negative slope asymmetry at the aggregate
level then emerges as a consequence of firms’ optimal investment decisions
in recognition of such frictions.
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