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Abstract

We develop a model of performance evaluation for mutual funds within a

family. Good family performance has two competing effects on the estimate of a

member fund’s alpha-generating skill and its inflows: a positive common-skill ef-

fect, and a negative correlated-noise effect. The sensitivities of the skill estimate

to fund and family performance depend on the weight of the family skill compo-

nent, the correlation of noise in fund returns, the number of funds in the family,

as well as fund size and fund age. Empirical estimates of mutual fund flow sensi-

tivities show patterns consistent with rational cross-fund learning within families.
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Investment outcomes are driven by skill and by luck. A fundamental issue in delegated

portfolio management is performance evaluation; that is, to distinguish skill from luck. This

distinction is crucial for appropriate selection of funds and compensation of fund managers.

Most methods of performance evaluation focus on the records of individual funds in isolation,

apart from any relevant information contained in other funds in the same family. The

objective of this paper is to provide a theoretical framework for evaluating the performance

of mutual funds within families, and to examine empirically how investors incorporate both

fund and family performance information when they allocate money across funds.

Most mutual funds belong to a family. Funds in the same family often share some com-

mon resources. One simple example is that multiple funds may be managed by the same

fund manager or management team. Also, managers may share information, opinions and

expertise with each other even when they are managing different funds. Furthermore, funds

in a family often share the same team of macroeconomic, industry and security analysts, who

generate investment ideas, and they typically have access to the same trading desks, legal

counselors and outside experts.1 Other examples of family resources include information

systems, portfolio analysis software, risk management tools, performance measurement pro-

cedures, and fund governance mechanisms. As a result, a fund’s alpha is jointly determined

by fund-specific characteristics, such as the skills of its manager and supporting staff, its

specific focuses and investment strategies, and by the quality of common resources.

Some aspects of family resources affect fund alphas systematically, but have little impact

on funds’ exposure to idiosyncratic risks. Examples are operating efficiency, which translates

into high or low expense ratios; the quality of trading desks and risk management process;

and the effectiveness of fund governance and manager compensation schemes. However,

the use of many other family resources has the effect of increasing the correlations of both

1Based on an extensive survey database, Cheng, Liu, and Qian (2006) report that fund managers on
average place a weight of over 70% on internal (“buy-side”) analysts as a source of research-based information.



alphas and idiosyncratic shocks to fund performance, as it induces member funds to tilt their

portfolios in similar directions, meaning that they over- or underweight the same securities

relative to their benchmarks. For example, a single idea from the analyst pool can lead

several funds to simultaneously increase or decrease positions in a security. These funds are

then subject to correlated shocks to their performance.2

Given the considerations above, how should one evaluate the alpha-generating skill of a

mutual fund in a family? More specifically, how does an estimate of the skill depend on

a fund’s own performance, and the performance of other funds in the family? How do the

sensitivities of the estimate to fund and family performance change over time? And how do

they vary with family characteristics, including the number of funds in the family, the weight

of common component in the alpha-generating skill, and the correlation of noise in fund

returns? How do mutual fund flows respond to fund and family performance in equilibrium

if investors learn optimally? And finally, is there evidence that investors respond to fund

and performance in a manner that is consistent with optimal learning?

To answer these questions, we develop a continuous-time model in which a fund’s alpha is

driven by a combination of a fund-specific skill and a common skill shared by all funds in the

family. We refer to this combination as the composite skill, the fund-specific component as

the fund skill, and the common component as the family skill. The returns of funds within

a family are subject to correlated idiosyncratic shocks, which are unobservable. Both fund

skills and the family skill are unknown latent variables, and are time-varying (except for

a special case of constant skills). A fund’s alpha increases with its composite skill, and

decreases with fund size. Investors estimate funds’ composite skills through the observation

of the returns of all funds in the family, and allocate wealth across funds, generating flows

into and out of funds, as in Berk and Green (2004).

2Elton, Gruber, and Green (2007) empirically document a higher correlation of mutual fund returns
within than across families
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We derive the sensitivities of the optimal estimate of the composite skill to both fund and

family performance. These results are in closed-form for fund families that are sufficiently

old. For young families, initial conditions matter, and we evaluate numerically the dynamics

of these sensitivities over time. Our model highlights two competing effects of good fam-

ily performance, measured by the average performance of other funds in the family, on the

estimate of a member fund’s composite skill: a positive common-skill effect and a negative

correlated-noise effect. The positive effect arises because family performance contains infor-

mation about the family skill. The negative effect arises because family performance also

contains information about unobservable shocks that affect all funds in the family. While the

estimate of a fund’s composite skill rises with its own unexpected performance, its response

to family performance can be either positive or negative, depending on the relative strength

of the common-skill and correlated-noise effects. The sensitivity of a fund’s composite skill

estimate to family performance increases with the weight of the common component in the

composite skill and the number of funds in the family, and decreases with the correlation

of noise in fund returns. The sensitivity to fund performance varies with these family char-

acteristics in an opposite way. However, both sensitivities decline as a fund grows older, as

investors become more certain about its composite skill.

We explore the implications of optimal cross-fund learning for mutual fund flows, mea-

sured as a percentage of fund assets, and find strong empirical support for our model.

Combining the CRSP survivor-bias-free mutual fund database with the Morningstar fund

manager database, we construct a proxy for the weight of the common component in the

composite skill using the overlap rate of managers across funds. We measure the correlation

of noise in fund returns by the average pairwise correlation of idiosyncratic returns within

families. We find that flows to a member fund on average respond positively to family per-

formance, suggesting the dominance of the common-skill effect. They respond more strongly

to family performance when the number of funds is large, and the correlation of fund returns
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within the family is low. The sensitivity of flows to a fund’s own performance declines with

fund age, the number of funds in the family, the manager overlap rate across funds, and

increases with the correlation of idiosyncratic fund returns. These patterns are consistent

with the predictions of our model. Interestingly, for the subsample of funds whose families

have a below-average manager overlap rate, offer a below-average number of funds, and show

an above-average correlation of idiosyncratic returns, the response of fund flows to family

performance is significantly negative. This suggests that the dominance of correlated-noise

effect is not only theoretically possible, but also empirically true for a sizable fraction of

funds.

Our work contributes to the literature on performance evaluation. Our results extend an

important insight of the theory of relative performance evaluation, which forms the founda-

tion of most benchmark-adjusted performance measures. Recognizing that peer performance

reveals information about common shocks to multiple agents, the relative performance eval-

uation literature generally postulates a negative relation between the estimated skill or effort

of an agent and the performance of his peers (Holmstrom (1982)). By allowing both unob-

servable skills and noise to be correlated, our model allows for rich possibilities of cross-unit

learning. We show that good peer performance can have either a positive or negative effect

on the estimated skill of an agent, and we derive the optimal weight of each signal in the

performance evaluation as a function of a number of model parameters. To the best of our

knowledge, we are the first to model the common-skill and correlated-noise effects jointly

and explicitly. Although our model is developed in the context of mutual fund evaluation,

the main insight is relevant for many other settings in which both fundamentals and noise

are correlated across units.

Our work also contributes to the understanding of the behavior of mutual fund investors.

It is well-known that investors chase good past performance (see, for example, Sirri and

Tufano (1998)). In an influential paper, Berk and Green (2004) reconcile such behavior with
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the well-documented lack of persistence in fund performance. The basic elements of their

model are managers with unknown skill, competition among investors, and diseconomies of

scale in portfolio management. In a similar environment, Dangl, Wu, and Zechner (2008)

model simultaneously mutual fund flows and manager replacement in response to past per-

formance.3 Both models are silent about cross-fund learning within fund families. We

extend the continuous-time structure of Dangl, Wu, and Zechner (2008) to a setup with

fund families, and derive equilibrium fund flows as optimal responses of rational investors to

both fund and family performance. We present new empirical patterns of mutual fund flows,

and show that investors respond to fund and family performance in a manner consistent

with optimal learning.

There is a large body of literature on mutual fund performance evaluation.4 Most methods

of evaluation rely solely on a fund’s own return or portfolio holding information. Several

recent papers propose methods incorporating additional information. For example, Pastor

and Stambaugh (2002) estimate the alpha of an actively managed fund using returns on

“seemingly unrelated” non-benchmark passive assets. Cohen, Coval, and Pastor (2005)

judge a fund manager’s skill by the extent to which his or her investment decisions resemble

those of managers with distinguished track records. Jones and Shanken (2005) measure

performance using the distribution of other funds’ alphas in addition to the information in

a fund’s own return history. Our performance evaluation strategy is in the spirit of this

literature, but differs in two important aspects. First, we exploit the information embedded

in the performance of a fund’s family. Second, while these previous studies focus mainly on

the cross-fund learning arising from common skills, we consider both the common-skill and

correlated-noise effects, and derive theoretically the determinants of their relative strength.

3Other learning-based models for the flow-performance relation include those by Lynch and Musto (2003)
and Huang, Wei, and Yan (2007).

4See Aragon and Ferson (2006) for an extensive review.
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Recently the literature has shown a growing interest in mutual fund families.5 One paper

that is closely related to ours along this line is Nanda, Wang, and Zheng (2004), who find that

the stellar performance of one fund has a positive spillover onto the inflows to other funds

in the same family. Another is Sialm and Tham (2013), who find that the prior stock price

performance of a fund management company predicts money flows of its affiliated funds.

Both papers are purely empirical. Our model of cross-fund learning provides a rational

explanation for such spillovers, and generates a number of new predictions regarding mutual

fund flow sensitivities to fund and family performance, which are supported by the empirical

patterns we find in the data.

The paper is organized as follows. Section 1 introduces our model of a mutual fund

family. Section 2 derives the rational beliefs of investors about composite skills, conditional

on both fund and family performance. Sections 3 derives in closed-form the factors that

govern the uncertainty and sensitivities of beliefs to fund and family performance in the long

run. Section 4 describes the evolution of these sensitivities over time. Section 5 derives fund

flows in equilibrium. Section 6 presents our empirical evidence on fund flows, while Section

7 concludes. The proofs of propositions and corollaries are in the Appendix.

1 A Family of Mutual Funds

We model n actively managed mutual funds within a family. The quality of management is

an unobservable factor governing the success or failure of a fund. Quality may vary through

time, and is a linear combination of two components, which together form the composite

skill θt. One part of θt is the fund-specific skill. The second part is the common family

skill. A fund’s alpha is an increasing function of θt, and its realized abnormal return is its

5See for example, Mamaysky and Spiegel (2002), Massa (2003), Gervais, Lynch, and Musto (2005), Massa,
Gaspar, and Matos (2006), Ruenzi and Kempf (2008), Pomorski (2009), Warner and Wu (2011), Khorana
and Servaes (2011), Bhattacharya, Lee, and Pool (2013).
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alpha plus noise. We calculate a conditional distribution of θt for all funds in the family

using abnormal fund returns as a continuous signal.

For simplicity, we abstract from managers’ market-timing activity and focus only on stock-

selection. Funds’ incremental abnormal returns, in excess of benchmarks and management

fees, dRt, are given by

dRt = αtdt+ σtBdWt. (1)

Here, αt is a n × 1 vector of fund alphas generated by active management, while σtBdWt

is the noise in abnormal returns. The n × n diagonal matrix σt represents the scale of

funds’ idiosyncratic risks. It has elements σit along the main diagonal, which are the

instantaneous volatilities of abnormal returns. Matrix B is the Cholesky factor of the

nonsingular correlation matrix BB’ that summarizes the instantaneous correlations, ρij, of

the noise in abnormal returns. Wt is a vector of standard Brownian motions that are

pairwise independent.

A fund’s idiosyncratic risk σit is governed by the scale of the fund’s portfolio tilt, which

is the difference between the fund’s weights in individual securities and the weights of its

benchmark portfolio with only systematic risks and zero alpha. A fund with no tilt has

σit = 0. As a fund increases the scale of a tilt, with the expectation of increasing fund

alpha, σit increases. If two funds i and j follow independent strategies and have orthogonal

tilts, the idiosyncratic shocks are uncorrelated, and ρij = 0. For various reasons noted

above, however, we expect funds within a family to follow positively correlated strategies.6

As emphasized by Berk and Green (2004), there are diseconomies of scale in active port-

folio management. We model fund alphas net of management fees by generalizing the

6While we implicitly assume ρij > 0 when we discuss the correlated-noise effect, our model allows for all
ρij ∈ (−1, 1), i 6= j, such that BB′ is nonsingular.
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specification of Dangl, Wu, and Zechner (2008) to allow for multiple funds:

αt = σtθt − γσtσtAt − ft, (2)

where θt, At and ft are n×1 vectors of composite skills, asset sizes and fees, respectively, and

γ > 0 is a parameter characterizing decreasing returns to scale. The i-th element of the first

term on the right-hand side of equation (2) is σitθit, so that alpha increases linearly with the

composite skill for a given level of idiosyncratic risk. The i-th element of the second term

is −γσ2
itAit. Thus, a fund’s alpha decreases with its own size, and at a higher rate when a

fund is more actively managed, i.e., when σit is high. Equation (2) captures the idea that

the diseconomies of scale rises with the degree of active management. A passively managed

fund, such as an index fund, suffers less from the price impact of trades because fund inflows

are allocated into a broad set of securities. The equation also implies that the marginal

return from taking idiosyncratic risk decreases, especially for large funds. This deters funds

from taking unlimited idiosyncratic risk.7

Composite skills vector θt is a linear combination of two components:

θt
def
= (1− β)θft + βθFt1n, (3)

where θft
def
=

(
θf1,t, ..., θfn,t

)′
is a vector of fund-specific skills, θFt is a scaler repre-

senting the family skill, and β ∈ [0, 1] is the weight of the family skill in the composite skill,

1n is a n vector of ones. For a fund with no fund-specific skill, θit = 0. A family with a

pool of excellent analysts has large θFt. If managers of individual funds work independently

of the family resources, β = 0. We expect individual funds to rely on family resources, i.e.,

7Our performance evaluation method only requires α to be linear in the latent variable θ. We specify
α explicitly. This allows us to derive equilibrium fund flows in closed-form. See Dangl, Wu, and Zechner
(2008) for a more detailed discussion of this specification.
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β > 0. In this case, the fund’s alpha increases directly with both θfi,t and θFt.
8

Mutual funds operate in a rapidly changing business environment. Past success or expe-

rience is no guarantee of future performance. To capture this characteristic of the industry,

we assume the unobservable composite skills follow a stochastic process:

dθt = k
(
θ − θt

)
dt+ ΩdZt, (4)

where the constant k governs the speed at which θt reverts to the long-run mean θ, and Zt

is a vector of n + 1 pairwise independent standard Brownian motions, each independent of

Wt.
9 Volatility coefficients are in the n× (n+ 1) matrix

Ω = [(1− β)ωf , βωF1n] , (5)

where ωf is a n × n diagonal matrix with coefficients ωfi ≥ 0 along the main diagonal,

representing the instantaneous volatilities of fund skills, while ωF ≥ 0 is the volatility of the

family skill. Thus, the stochastic component of an element dθit in (4) is (1 − β)ωfidZi,t +

βωFdZn+1,t. Denote the instantaneous volatility of the composite skill of fund i by ωi, and

we have

ωi =
√

(1− β)2 ω2
fi + β2ω2

F . (6)

Equations (4)-(6) nest three important cases. First, when k = ωi = 0 for all i, composite

skills are constant (θt = θ). Second, when k = 0 and ωi > 0 for all i, composite skills follow

random walks. Finally, when k > 0 and ωi > 0 for all i, composite skills are mean-reverting.

When ωi > 0 for all i, the instantaneous covariance matrix ΩΩ′ is positive definite, and

8We assume funds rely on family resources to the same degree, so that they share the same β. This can
be easily generalized to a case in which the β are heterogeneous across funds.

9Kacperczyk, Van Nieuwerburgh, and Veldkamp (2012) provide empirical evidence of time-varying fund
manager skill.
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the instantaneous correlation of the true composite skills for a pair of funds i and j is

λij
def
=

β2ω2
F

ωiωj
. (7)

This measures the variation in the family skill as a driver of composite skills, relative to

the variation in fund skills. It is easy to see that λij increases with β, and decreases with

the ratios of ωfi/ωF and ωfj/ωF . A value λij = 0 indicates either that the family skill is

constant, ωF = 0, or that managers of individual funds work independently, β = 0. A value

λij = 1 indicates instead that the fund skills are constant, ωfi = ωfj = 0, or that member

funds act in concert and rely entirely on the family skill for alpha generation, β = 1.

2 Evaluation of Composite Skills

Information is symmetric but incomplete. Composite skills θt and the idiosyncratic shocks

to returns dWt are not observable. Investors form beliefs about the conditional distribution

of unobservable composite skills, using the returns of all funds in a family as signals. We

now derive the optimal updating of the beliefs.

Substituting for αt using equation (2), the observable components in equation (1) form

a signal dξt of composite skills. This is

dξt
def
=σ−1

t [dRt + (γσtσtAt + ft) dt] (8)

= θtdt+ BdWt.

The signal is centered on the drift θtdt and has noise BdWt that is correlated across funds.

At any time t, information is the history of fund returns represented by the filtration

Ft
def
= σ {ξs}

t
s=0 . Given a multivariate normal prior distribution with mean vector m0 and

covariance matrix V0, the conditional distribution of composite skills is also multivariate
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normal.10

Proposition 1. The conditional mean vector mt
def
=E(θt|F t) and the conditional covariance

matrix Vt
def
= V ar(θt|Ft) for t ≥ 0 follow the processes:

dmt = k
(
θ −mt

)
dt+ StdW

F
t , (9)

dVt

dt
= ΩΩ′ − 2kVt −Vt (BB′)

−1
Vt, (10)

where

St
def
= Vt (BB′)

−1
, (11)

dWF
t

def
= (dξt −mtdt) . (12)

When k = 0, equation (10) has the analytic solution:

Vt = BPtB
′ + V∗, (13)

where

V∗ =

 0n×n, if ωi = 0 for all i,

BDΠ1/2D′B′, if ωi > 0 for all i,
(14)

is the constant covariance matrix in the long run (as t → ∞), and the matrices D,Π, and

Pt are as defined in Appendix A.1.

Proof. See Appendix A.1.

The conditional mean mt follows a multi-variate Orstein-Uhlenbeck process in equation

(9), with long-run mean θ. The vector dWF
t defined in equation (12) is a vector of correlated

10Investor beliefs are conditional distributions for θt, which has the same dimension as the observation
equation. A conditional distribution can be calculated numerically for individual components θi and θF .
Learning these components separately, which is not pursued in this paper, is important for the hiring and
firing decisions in fund families, and investor responses to these decisions, but it is not required to form
expectations of fund alphas.
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Brownian motions under investors’ information set Ft with correlation matrix BB′, and it

is the innovation in the signal process ξt. Taking the expectation of both sides of equation

(2), we have mt = σ−1
t [E (αt|Ft) + γσtσtAt + ft] . Substituting for dξt using equation (8),

equation (12) becomes

dWF
t = σ−1

t [dRt − E (αt|Ft) dt] , (15)

which shows that dWF
t is the vector of unexpected abnormal returns standardized by volatil-

ity σt. We refer to dWF
t simply as unexpected performance.

The matrix St in equation (9) characterizes the response of investors’ beliefs to mutual

fund performance. An element on the main diagonal of St is the sensitivity of a fund’s con-

ditional mean to its own unexpected performance. An off-diagonal element is the sensitivity

to the unexpected performance of another fund. Equation (11) show that the sensitivities

increase with uncertainty about composite skills, which is described by matrix Vt. Ele-

ments on and off the main diagonal of Vt are conditional variances and covariances of θt,

respectively. Generally, if composite skills are estimated precisely, St is small and beliefs are

insensitive to unexpected performance. If instead little is known about the skills, unexpected

performance is an important signal, and investors respond to it strongly.

The analytic solution for Vt in equation (13) obtains when k = 0, i.e., when composite

skills are constant or follow a random walk. In the case of mean reversion, i.e., k > 0,

numerical solutions to equation (10) are easily calculated. In principle, elements of Vt may

either decrease or increase with time, depending on the levels of initial uncertainty V0 and

volatilities of true composite skills ω. However, in reality we expect that Vt decreases early

in the life of a family because investors initially know little about composite skills and their

uncertainty declines as they learn over time.

The long-run covariance matrix, V∗, is the solution to equation (10) with dVt

dt
= 0n×n.

In comparison to Vt, V∗ is simple because it is time-independent. It is also independent
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of prior beliefs. When k = 0, it has the simple form given in equation (14). Furthermore,

V∗ as the limiting value is a good approximation to Vt after the passage of enough time,

i.e., in old families. For these reasons, we first study the long-run covariance matrix V∗

and sensitivity matrix S∗ = V∗ (BB′)
−1

in Section 3, and then the time-dependent case in

Section 4.

3 Sensitivities of Investor Beliefs in the Long Run

The factors that govern the sensitivities of beliefs to performance are most transparent in

the long-run limiting case as t → ∞, in which both the uncertainty about composite skills

and the sensitivities of beliefs are constant, meaning that Vt = V∗ and St = S∗. We study

V∗ and S∗ in this section.

For simplicity, we assume here that composite skills follow a random walk (i.e., k = 0),

and defer the case of mean-reversion to Section 4. This allows us to derive analytic solutions,

which are good approximations for the case in which skills revert slowly to their long-run

means. We focus on a homogeneous n-fund family, in which βi = β ∈ [0, 1], ωfi = ωf > 0 for

all i (and therefore ωi = ω for all i and λij = λ ∈ [0, 1] for all i 6= j), and ρij = ρ ∈
( −1
n−1

, 1
)

for all i 6= j.11

For a homogeneous family, matrix V∗ has identical elements on the main diagonal, say,

vn, and identical elements off the diagonal, say, vn.12 Matrix S∗ has the same structure. As

t→∞, the dynamics of the conditional mean for each fund in equation (9) simplifies to

dmit = sndW
F
it + sndX

F
−i,t, (16)

11The condition −1
n−1 < ρ < 1 ensures that the matrix BB′ is nonsingular. For the special case of n→∞,

nonsingularity requires 0 ≤ ρ < 1.
12For a scalar variable, we use the subscript n to denote explicitly the number of funds in a family, and

the subscript t to indicate time-dependence. We suppress the subscript n if a variable is a vector or matrix.
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where sn and sn/ (n− 1) are the diagonal and off-diagonal elements of S∗, respectively;

dWF
it is the unexpected performance of fund i; and dXF−i,t

def
= 1

n−1

∑
j 6=i dW

F
jt is the average

unexpected performance of the other funds in the family. Equation (16) has the obvious

advantage over equation (9) in that the performance of the other funds is summarized in the

single statistic dXF−i,t. We refer to dXF−i,t as the family performance.

The sensitivity coefficients sn and sn are functions of the elements vn and vn of the

covariance matrix. Section 3.1 describes vn and vn, while Section 3.2 describes sn and sn.

3.1 Uncertainty About Composite Skills

The long-run uncertainty about composite skills is described by the constant conditional

covariance matrix V∗ of the vector of composite skills. Proposition 2 gives the diagonal and

off-diagonal elements of V∗, vn and vn, respectively, for a homogeneous n-fund family.

Proposition 2. Assume that composite skills follow a random walk and that funds in the

family are homogeneous. If ρ 6= n−2
n−1
− λ, the long-run conditional variance of each fund’s

composite skill is

vn = ω

√
K2

1

(Kρ −Kλ)
2 (n− 1) +K2

1

≤ ω, (17)

and the long-run conditional covariance of composite skills for each pair of funds is

vn = ω
K2 −KρKλ√

(Kρ −Kλ)
2 (n− 1) +K2

1

|K1|
K1

, (18)

where K1, K2, Kρ, andKλ are functions of ρ and λ given in equations (A.16), (A.17) and

(A.22), respectively. In particular, if ρ = λ, then vn = ω; otherwise, vn < ω.13

Proof. See Appendix A.2

13Equations (A.19) and (A.20) give vn and vn for the case ρ = n−2
n−1 − λ.
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To better convey the intuition of these results, we present below two special cases of

Proposition 2, one with a two-fund family, another with a family with infinitely many funds.

Corollary 1. Long-run conditional variance and covariance in two special cases:

(i) For a two-fund family (n=2), the long-run conditional variance and covariance are,

respectively,

v2 =
1

2
ω
(√

1 + ρ
√

1 + λ+
√

1− ρ
√

1− λ
)
, (19)

v2 =
1

2
ω
(√

1 + ρ
√

1 + λ−
√

1− ρ
√

1− λ
)
. (20)

(ii) As n→∞, the long-run conditional variance and covariance are, respectively,

v
def
= lim

n→∞
vn = ω

(√
ρλ+

√
1− ρ

√
1− λ

)
, (21)

v
def
= lim

n→∞
vn = ω

√
ρλ. (22)

Proof. See Appendix A.3.

Other things equal, the long-run uncertainty about composite skills, vn, is greatest when

the correlation of noise in fund returns, ρ, is equal to the instantaneous correlation of true

composite skills, λ. This is most easily seen for the two special cases in Corollary 1, as both

conditional variances, v2 in equation (19) and v in equation (21), are maximized in ρ when

ρ = λ. This result also holds for any family size n ≥ 2. The intuition is simple. As we

demonstrate in Section 3.2, when ρ = λ, there is no opportunity for cross-fund learning.

Investors learn about a fund’s composite skill using only the fund’s own performance. As a

result, the estimate of the composite skill is imprecise. Since family performance does not

provide additional information about a member fund in this case, the long-run uncertainty

is independent of family size.
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The precision of an optimal estimate of composite skills in a fund family, 1/vn, increases

as ρ deviates from λ. Equation (19) and (21) show, for the two-fund and infinite-fund cases

respectively, that precision is maximized when either: (i) the funds rely solely on the family

skill (λ = 1), and the noise in their returns is uncorrelated (ρ = 0); or (ii) the funds are

independently managed (λ = 0), and the noise is almost perfectly correlated (ρ → 1).14

Numerical evaluation of equation (17) shows that this holds for all family sizes n ≥ 2. The

intuition is as follows. In case (i), the composite skill consists of only the family component,

and it is the same across funds. Due to zero correlation of noise, a simple average of all

funds’ returns provides a precise estimate of this common component, especially when the

family size is big. As the number of funds in the family goes to infinity, the law of large

numbers ensures that the family skill is perfectly revealed. In case (ii), the noise in fund

returns is perfectly correlated, while the composite skill of each fund consists only of the

fund skill. Because innovations of fund skills are independent, they tend to be averaged

out, thus family performance gives a precise estimate of the perfectly-correlated noise. This

allows investors to estimate fund skills accurately. As the family size goes to infinity, the

average of fund-specific skills goes to the known population mean, thus family performance

reveals the noise completely. The difference between a fund’s performance and the family

performance reveals the fund skill completely.

To better illustrate the properties of the long-run uncertainty vn, we construct a numerical

example. We assume that family skill and fund skill are equally important (β=0.5), and their

volatilities are 0.10 and 0.15, respectively. This implies that the instantaneous correlation

of composite skills, λ, between two funds is 0.31 (equation (7)). According to Proposition 2,

the long-run uncertainty is highest when the correlation of noise in fund returns, ρ, is equal

to 0.31, and declines as ρ deviates from 0.31. This pattern shows up very clearly in Figure

1, which plots vn as a function of ρ for families with 2, 10, 30 and infinitely many funds.

14For the family with infinitely many funds, uncertainty goes to zero in these two cases.
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The figures also shows that the uncertainty about composite skills is in general lower for

bigger families, suggesting that the availability of a larger number of signals allows a more

precise estimation of composite skills. However, this is not true when ρ = λ, in which case

the family size is irrelevant for the long-run uncertainty due to the absence of cross-fund

learning.

3.2 Sensitivities of Beliefs

After computing the long-run conditional covariance matrix, we can now describe the sensi-

tivities of the optimal estimate of composite skill to a fund’s own performance and to family

performance in a n-fund family, i.e., the coefficients sn and sn in equation (16).

Proposition 3. Assume that composite skills follow a random walk and that funds in the

family are homogeneous. In the long run, if ρ 6= n−2
n−1
−λ, the direct sensitivity of the estimate

of a fund’s composite skill to its own performance is

sn = vn

(
1−

(
1− Kλ

Kρ

)
ρ

1
n−1

+ λ+ ρ− 1

)
, (23)

and the cross-sensitivity of the estimate to the average performance of other funds is

sn = vn

(
1− Kλ

Kρ

)
1

1
n−1

+ λ+ ρ− 1
, (24)

where Kρ and Kλ are functions of ρ and λ given in (A.22). In particular, if ρ = λ, then sn =

vn and sn = 0.15

Proof. See Appendix A.4.

Again, the intuition of these results is easier to understand in two special cases.

Corollary 2. Long-run sensitivities in two special cases:

15Equation (A.25) and (A.26) give sn and sn for the case ρ = n−2
n−1−λ. Note that Kρ > 0 since ρ ∈ ( −1n−1 , 1).
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(i) For a two-fund family (n=2), the long-run direct sensitivity and cross-sensitivity are,

respectively,

s2 =
1

2
ω

(√
1 + λ√
1 + ρ

+

√
1− λ√
1− ρ

)
, (25)

s2 =
1

2
ω

(√
1 + λ√
1 + ρ

−
√

1− λ√
1− ρ

)
. (26)

(ii) As n→∞, the long-run direct sensitivity and cross-sensitivity are, respectively,

s
def
= lim

n→∞
sn = ω

√
1− λ√
1− ρ

, (27)

s
def
= lim

n→∞
sn =

 0, if ρ = λ = 0,

ω
(√

λ√
ρ
−
√

1−λ√
1−ρ

)
, otherwise.

(28)

Proof. See Appendix A.5.

Consider first the two special cases of the Corollary. In each case, the direct sensitivity

of the skill estimate to a fund’s own performance is nonnegative. s2 is strictly positive as

long as composite skills are stochastic (ω > 0), and s is strictly positive if in addition, λ 6= 1.

This means that unexpectedly good performance by a fund raises investor beliefs about its

composite skill. Furthermore, both s2 and s decrease with λ and increase with ρ, indicating

investors put more weight on a fund’s own performance when noise in fund returns is highly

correlated, and when the instantaneous correlation of composite skills is low (due to either

a low β or a low ωF ).

In contrast, the sensitivities of the estimate of the composite skill to family performance,

s2 and s, decrease with ρ and increase with λ, and are either positive, negative, or zero,

depending on the relative sizes of ρ and λ. This ambiguity comes from two competing

effects, one due to the correlation of noise, the other due to the existence of a common

component in composite skills. The two-fund family illustrates these two competing forces
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most transparently.

In the two-fund family with ρ = 0, s2 = 1
2
ω
(√

1 + λ−
√

1− λ
)
. This measures the pure

common-skill effect, and is positive as long as λ > 0. Similarly, when λ = 0, we have a

measure of the pure correlated-noise effect, s2 = 1
2
ω( 1√

1+ρ
− 1√

1−ρ), which is positive if ρ < 0,

and negative if ρ > 0. Between these two extreme cases, s2 is a mixture of both effects.

It is positive when λ > ρ, suggesting that in the face of high instantaneous correlation of

composite skills and low correlation of noise in fund returns, the optimal estimate of the

composite skill of one fund puts a positive weight on the performance of the second fund.

Alternatively, when λ < ρ, the correlated-noise effect is dominant and s2 < 0. Finally, when

λ = ρ, the two effects offset each other, s2 = 0, and the evaluation of a fund’s composite

skill is entirely based on its own performance.16 Equation (28) shows that these properties

of cross-fund learning are also true as the family size goes to infinity. The common-skill

effect dominates the correlated-noise effect if and only if λ > ρ > 0.17

Consider now the general case described by Proposition 3. Equations (23) and (24) clearly

demonstrate that both the direct sensitivity sn and the cross-sensitivity s̄n are directly linked

to the long-run uncertainty vn. Their magnitudes are linearly increasing with vn, suggesting

investors pay more attention to both fund and family performance when they are more

uncertain about skills. For any family size, the ratio of s̄n to sn depends only on the

instantaneous correlation of true composite skills λ, the correlation of noise in fund returns

ρ, and the family size n. The other primitive parameters β, ω, and ωF , affect this ratio

through their impacts on λ (equation (7)).

16It is worth noting that a positive cross-sensitivity requires λ > ρ only in the long-run case (t → ∞),
which is the setting of this section. In the short run, the cross-sensitivity depends on initial conditions and
is time-dependent. It may be positive even if λ=0, or if λ is undefined, as in the case of constant skills.

17Equation (28) also shows that s explodes as ρ→ 0, provided λ 6= 0. This does not imply, however, that
investors’ beliefs have unbounded volatility. Because noise in fund returns is uncorrelated, and variations of
fund skills are independent, both tend to be averaged out as n → ∞. As a result, family skill becomes the
only driver of variation in the family performance in this limiting case, and can be learned perfectly. This
implies that unexpected family performance under investors’ information set, dXF−i,t, goes to zero. It is easy

to show that sndX
F
−i,t has finite variance even through s̄ explodes.
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We plot the sensitivity ratio s̄n
sn

for alternative family sizes in Figure 2, letting the number

of funds in a family, n, vary from 2, 10, 30, to ∞. Panel (a) plots the ratio as a function

of β, the weight of family skill in the composite skill, while Panel (b) plots it as a function

of ρ, the correlation of noise. For all family sizes, the ratio increases with β, decreases with

ρ, and is zero when ρ is equal to the value of λ implied by the values of β, ωf and ωF .

Furthermore, the impacts of β and ρ on the ratio are progressively stronger as the size of

the family grows, indicating that investors put more weight in bigger families on unexpected

family performance when they evaluate any single fund. For example, while the ratio of

cross-sensitivity to direct sensitivity is never lower than -1, it can be substantially bigger

than 1 in large families, indicating that investors react to family performance more strongly

than to a fund’s own performance. This occurs when either β is high, or ρ is low.

4 Sensitivities of Investor Beliefs Over Time

In this section we study the dynamics of investor sensitivities to fund and family perfor-

mance, allowing for mean-reversion in true skills. The long-run analysis in the prior section

highlights the key determinants of these sensitivities, but it is silent about their evolution

over time. In reality, uncertainty is higher early in the life of a fund and declines as investors

learn from its track record. As the beliefs about composite skills become more precise, the

sensitivities of beliefs to both fund and family performance decline. We investigate the paths

of these sensitivities over time for families with different characteristics.

We calculate numerically the covariance matrix Vt and the sensitivity matrix St given

by equations (10) and (11) under reasonable parameter values. For tractability, we assume

again, as in Section 3, that funds in a family are homogeneous. As a result, Vt is fully

characterized by a pair of differential equations, one for the diagonal elements vnt and one

for the off-diagonal elements vnt. Also, investors’ conditional estimate of composite skills
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follows equation (16), although now the coefficients, snt and snt, are time-varying.

The parameter values in the base case of our analysis are shown in Table 1. The number

of funds in a family is n=10, close to the average number of equity funds per family in

the CRSP mutual fund sample summarized in Table 2. The correlation of noise in fund

returns is ρ = 0.2, approximately equal to our empirical estimate of pair-wise correlation

of idiosyncratic fund returns within families (0.18). We set β = 1/2, which means that

fund skill and family skill are equally important in generating alphas. Also, we set the

volatilities of fund and family skills, ωf and ωF , to 0.15 and 0.10, respectively. These values

imply that the instantaneous correlation of composite skills is λ = 0.31, which is higher

than ρ. Therefore from Proposition 3, the long-run cross-sensitivity sn is positive. As we

see in Section 6, this is an empirically reasonable scenario for a typical fund. The initial

variance of composite skills is vn0 = 0.12, following Dangl, Wu, and Zechner (2008). This

is 33% higher than the maximum long-run variance implied by the values of β, ωf and ωF

given above in the absence of mean-reversion.18 The initial covariance of composite skills is

vn0 = 0.05, which is near 40% of the initial variance. Finally, the mean-reversion rate of

skills is k = 0.05.

Figure 3 shows the sensitivities of beliefs to both fund and family performance over time,

for 20 years beginning at fund inception. In general, both sensitivities decline over time

as investors develop more precise estimates of composite skills. However, since skills are

stochastic, investors remain uncertain about composite skills and are sensitive to performance

throughout the lives of funds. The figure also shows that, for most cases, the sensitivities

approach their long-run levels after about 10 years. Therefore, our results about the long-run

sensitivities in Section 3 are very useful.

Panels (a) and (b) illustrate the influence of the weight of family skill in the composite

18The maximum long-run variance is obtained when ρ = λ = 0.31 according to Proposition 2, and is equal
to 0.09 (=

√
0.52 ∗ 0.152 + 0.52 ∗ 0.102).
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skill by fixing other parameter values at their base levels. Since this parameter does not

enter the initial sensitivity matrix S0 directly, it has no impact on the sensitivities at time

zero, but its effects become increasingly more pronounced over time.19 Consistent with the

long-run results in Proposition 3, as funds rely more on the family skill in alpha generation (β

varies from 0.3 to 0.7), beliefs become less sensitive to fund performance and more responsive

to family performance. When the reliance on family skill is low (β=0.3), the sensitivity to

family performance becomes negative as a fund grows older, indicating the dominance effect

of noise correlation.

Panels (c) and (d) illustrate the effects of changes in the correlation of noise in fund

returns, ρ, for a family of 10 funds. Like family size, the correlation ρ tends to have opposite

effects on the direct sensitivity and the cross-sensitivity. As it increases from 0.05 to 0.35,

the sensitivity of beliefs to fund performance increases, except for a short period of time

early in the fund’s life, while the sensitivity to family performance decreases sharply, from

about 0.3 to almost zero for a new fund. This pattern is consistent with Proposition 3.

It suggests that the cross-fund learning is significantly affected by the correlation of noise

in fund performance. In fact, when ρ is high, the positive common-skill effect of family

performance on the estimate of composite skill is largely offset, or even reversed, by the

negative correlated-noise effect, and snt becomes negative for as funds grow older.

Panels (e) and (f) illustrate the effects of family size. As the number of funds in the

family increases from 2 to 30, the sensitivity of beliefs to fund performance decreases, while

the sensitivity to family performance increases. Equation (31) then implies that as family size

increases, the sensitivity of flows to fund performance declines, while the sensitivity to family

performance increases. This result is easy to understand. Family performance contains less

19We take the initial covariance V0 as given. In a more general setup, one would expect the ratio v̄n0/vn0
to increase with β: as the weight of the common component increases, the correlation between composite
skills under the initial information set should also increase. Therefore, one would expect that the sensitivity
to family performance increases with β at time 0 as well.
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noise and more information about family skill when it represents a large number of funds, so

it generates a stronger response in large families. Panel (b) also suggests that the sensitivity

to family performance declines faster over time in bigger families. This is because investors

learn faster about the family skill in the presence of a larger number of signals. In the long

run, even though the uncertainty about the composite skill is lower for larger families (as

shown in Figure 1), the sensitivity to family performance is stronger. This suggests that

the impact of lower uncertainty is more than offset by the higher information quality of the

performance of large families.

While the parameter values we use to draw Figure 3 are mainly illustrative, the general

patterns are rather robust. We experiment with a wide range of alternative parameterizations

and find similar results. The direct sensitivity snt declines over time as long as the initial

uncertainty vn0 is above the long-run variance vn. The cross-sensitivity s̄nt declines over

time as long as v̄n0/vn0 is not too small. Higher mean-reversion rate k reduces the long-run

uncertainty, and therefore reduces both snt and s̄nt for all t > 0, but it has little effect on

the variation of these sensitivities across β, ρ and n. For the special case with constant

skills (ωf = ωF = k = 0), Panels (c) through (f) in Figure 3 are largely unchanged except

that the long-run sensitivities converge to zero. Since the conditional covariance matrix Vt

is independent of β in this case, as one can see from equation (10) by setting Ω = 0, the

sensitivities snt and s̄nt are also independent of β. However, if one takes into account the

fact that β and the ratio v̄n0/vn0 should in general be positively correlated, a large β should

still lower the direct sensitivity snt and increases the cross-sensitivity s̄nt.

5 Fund Flows in Equilibrium

We now investigate the implications of optimal cross-fund learning for the dynamics of fund

flows, in an environment mimicking that of Berk and Green (2004). Investors provide capital
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to mutual funds without transaction costs. They direct assets toward funds with positive

expected alpha, net of fees, and pull assets from funds with negative expected net alpha. In

equilibrium, the size of fund i is constantly adjusted to satisfy E(αit|F t) =0, meaning that

the conditional expected alpha net of fees is zero. Equation (2) then gives

Ait =
1

γ

(
mit

σit
− fit
σ2
it

)
. (29)

A mutual fund family maximizes total fee income f ′A, setting optimal fee ratios and

idiosyncratic volatilities. The optimal quantities for fund i satisfy

fit
σit

=
1

2
mit. (30)

The ratio on the left-hand side is determined in equilibrium, but neither the fee nor the

idiosyncratic volatility is unique. A fund may set a high fee, attract a low level of assets,

and take large positions in mispriced assets. Or, it may set a low fee, attract a large amount

of inflows, and stick closely to a benchmark portfolio. Provided that the fund’s fee and

idiosyncratic risk satisfy equation (30), the total fee income is the same in either case. We

follow Dangl, Wu, and Zechner (2008) and assume, without loss of generality, that the family

sets constant fees, f = (fi) . Because σit > 0, equation (29) implies that a fund is viable, i.e.,

it has Ait > 0 and earns a positive fee, only if the estimated composite skill mt is positive.

Otherwise, the fund is either reorganized or closed.

Equations (29) and (30) determine the equilibrium size of a fund. For mit > 0, fund size

is a convex function of the estimate of the composite skill:

Ait =
m2
it

4γfi
,
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and, using Ito’s lemma and equation (9), the instantaneous growth rate of assets is

dAit
Ait

= 2
dmit

mit

+
(dmit)

2

m2
it

(31)

= 2k
1

mit

(
θi −mit

)
dt+

1

m2
it

SitBB′S′itdt+ 2
1

mit

SitdW
F
t .

where Sit is the i-th row of St.
20 By writing SitdW

F
t =

∑
j sijtdW

F
jt , we see that one

fund’s asset growth rate responds to the performance of all funds in the family. If sijt > 0,

unexpectedly good performance by fund j increases the size of fund i, while if sijt < 0, the

relation is negative.

Investor beliefs and fund flows respond continuously to unexpected performance dWF
t .

By substituting the equilibrium condition E (αt|F t) =0 into equation (15), we see that

dWF
t = σ−1

t dR. (32)

That is, in equilibrium, the unexpected performance is the vector of abnormal returns nor-

malized by idiosyncratic volatilities. Any nonzero abnormal return is a surprise under the

investors’ information set, and leads to a revision of beliefs and a response of fund flows.

6 Empirical Analysis

Since fund size is determined by investor beliefs about the composite skill in the Berk-

Green equilibrium, our results in Sections 3 and 4 on the sensitivities of investor beliefs

translate directly into predictions about the response of mutual fund flows to unexpected

performance, dWF
t , given in equation (32). According to equation (31), the magnitude of

the flow response, measured as a percentage of assets, is proportional to the sensitivity vector

20The first term in the second line is a drift of fund size due to the mean-reversion of skills. The second term
is a positive drift due to the convex relation between the fund size and the conditional mean of composite
skills.
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Sit. Furthermore, it is inversely related to the conditional estimate of the composite skill,

mit, which is positively related to the equilibrium fund size. Our model thus yields the

following hypotheses about fund flows:

H1: A higher weight of the common component in the composite skill reduces the sensitivity

of flows to fund performance, and increases the sensitivity to family performance;

H2: A higher correlation of noise in fund returns within a family increases the sensitivity

of flows to fund performance, and reduces the sensitivity to family performance;

H3: A larger number of funds in the family reduces the sensitivity of flows to fund perfor-

mance, and increases the sensitivity to family performance;

H4: Fund flows become less sensitive to both fund performance and family performance as

funds grow larger and grow older.

We test these predictions of our model in this section.

6.1 Data and Summary Statistics

Our data come primarily from the CRSP survivor-bias-free mutual fund database. Our

sample covers the period from January 1999 through December 2011. We focus on domestic

equity funds. The advantage of using this relatively homogeneous sample is that it allows

us to use the same asset pricing model to estimate the abnormal returns of all funds.21 The

data are at the share class level. We use the MFLINKS database to aggregate the data

to the portfolio ( i.e., fund) level. A fund’s total net asset value (TNA) is the sum across

21We select all funds in the following Lipper classes: Large-Cap Core, Large-Cap Growth, Large-Cap
Value, Mid-Cap Core, Mid-Cap Growth, Mid-Cap Value, Small-Cap Core, Small-Cap Growth, Small-Cap
Value, Multi-Cap Core, Multi-Cap Growth, Multi-Cap Value. The Lipper fund classification information
begins in year 1999. The database uses different classification systems for years prior to 1999. Furthermore,
for most funds, the management company code, a data item we use to identify the fund family, begins in
1999.
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share classes. Its return and expense ratio are the averages, weighted by the prior-period

asset share of each class. Fund age is defined as the number of years since the inception

of the oldest share class. A fund’s family affiliation is identified by a management company

code, together with a company name. We exclude the time period before a fund’s total net

asset value reaches five million dollars, and exclude funds with fewer than 36 monthly return

observations. The final sample consists of 2459 funds, affiliated with 686 fund families.22

Table 2 reports summary statistics of our sample at the fund-month level. The family-

level characteristics are assigned to all member funds. For example, the last row of the table

reports the average number of funds in a family, which is 12.2. This is the average fund

family size across all fund-month observations.

Fund flow is defined as the difference between the monthly growth rate of the fund’s

assets (TNA) and the monthly return. To mitigate the effects of extreme observations and

potential data errors, we exclude observations below the 1st or above the 99th percentiles of

the full sample. Our results are qualitatively the same without this step. Funds on average

receive an inflow of 0.28% per month during the sample period.

Investors in our model learn by observing funds’ abnormal returns normalized by idiosyn-

cratic volatilities (see equations (9) and (32)). These signals are known as the Treynor and

Black (1973) information ratio, which is widely used in portfolio performance evaluation.

To stay closely to our model, we use information ratio as our empirical measure of fund

performance. A nice feature of this measure is that it explicitly accounts for the noisiness

of a fund’s abnormal returns. We construct monthly series of information ratios using two

standard models: the Fama-French three-factor model and the Carhart (1997) four-factor

model. A fund’s performance, Perf, is the ratio of it’s factor-model alpha and the standard

deviation of it’s model residuals, each estimated using the 36 monthly observations up to

22789 funds in our sample changed family affiliation during the sample period. For example, nine Merrill
Lynch funds switch to their family affiliation to Blackrock in the first quarter of 2007.
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the current month.23

Our mean estimates of Perf using the three- and four-factor models are very similar.

The average fund earns a negative alpha of approximately ten basis points per month, net

of expenses, and it exhibits an idiosyncratic volatility of 1.4% per month, or about 5% per

annum. The average monthly information ratio is -0.10, which corresponds to an annualized

ratio of -0.35.24

In each month of the sample, family performance, FamPerf, is calculated for each fund as

the average of Perf across all funds in the family, excluding the fund itself. We also compute

the average pairwise correlation of idiosyncratic returns, Rho, between the member funds of

a family, and we assign this average value to all member funds. The correlations are also

estimated with rolling windows of 36 months. Only the funds affiliated with a single family

during the 36-month estimation period enter the calculations of FamPerf and Rho.

Figure 4 plots the monthly average pairwise correlations of idiosyncratic returns across all

pairs of funds within a family. For comparison, we also plot the average pairwise correlations

of idiosyncratic returns between 278 standalone funds in our sample. These funds do not

belong to a family that offers multiple domestic equity funds. The results estimated using the

three- and four-factor models are very similar. The average correlation between stand-alone

funds across all months is only 3.4%, while the average correlation between funds within

a family is 3.5 times higher, at a level of 15.2%.25 The difference of 11.8% between the

23Factor returns and the Treasury rates used for calculating excess returns are obtained from the website
of Professor Ken French at Dartmouth College. Perf is calculated only for funds that have been affiliated
with a given fund family for at least 36 months and have at least 30 return observations in the 36-month
rolling period.

24The fact that mutual funds on average earn a negative alpha net of expenses poses a challenge to the
Berk and Green (2004) equilibrium, as argued by Fama and French (2010). One of the reasons for such
underperformance is that the benchmark returns do not account for portfolio transaction costs.

25These numbers are the averages of the three- and four-factor models. The 15.2% within-family correlation
is slightly different from the corresponding numbers in Table 2 because of different averaging procedures.
Here we first calculate all the pairwise correlations in a given month (separately for pairs within the same
family, and pairs of standalone funds), and then average across months. In Table 2, we first calculate the
average pairwise correlation for each family in each month, and then average the family-wide correlations
across all fund-months in the sample.
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within-family and across-family correlations is stable and persistent. This is evidence of a

strong family effect in fund returns. It highlights the importance of the common noise in

idiosyncratic returns of funds within families.

Another key parameter in our model is the weight of a family’s common skill in a fund’s

composite skill, β. Unfortunately, this weight cannot be measured directly. We therefore

construct a proxy for it using the average manager overlap rate across funds. The idea is

straightforward. If each fund is managed by a unique manager or management team, then

the common component in member funds’ composite skills is relatively low. By contrast,

if all funds in the same family are managed by the same manager or management team,

then the common component is high. To quantify such differences, for each pair of funds

within the same family, we define a pairwise manager overlap rate as the the number of

managers managing both funds divided by the average number of managers across the two

funds. We then average this ratio across all pairs of member funds to obtain the manager

overlap rate for a family. We acknowledge that this ratio may not measure the absolute

level of β accurately, as there are other types of family and fund-specific resources used in

the alpha-generating process. Nevertheless, it captures an important source of variation in

β across families.

While the CRSP mutual fund database contains a data item recording the names of

fund managers, it has important limitations. With only a few exceptions, all funds with

more than three managers are recorded as “Team-Managed”, for which manager names are

not reported. Massa, Reuter, and Zitzewitz (2010) compare the CRSP and Morningstar

mutual fund manager data, and find that Morningstar does a significantly better job in

capturing what funds disclose in their SEC filings. A random check of a small number

of fund prospectuses confirms their results. We therefore use Morningstar as our source

of manager data, as they do in their study. The database contains a unique code for each

manager, which greatly facilitates the identification of managers. It records the start and end
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dates of each manager at each fund. Using CUSIP codes, fund tickers and fund names, we

are able to match 95% of the fund-month observations in our CRSP sample to Morningstar.26

Table 2 shows that the average manager overlap rate across fund months is 0.19, with a

standard deviation of 0.28. Not surprisingly, we find that the manager overlap rate tends

to be lower in families with a large number of funds. This is not a problem for multivariate

regressions in which family size effects are explicitly accounted for. However, if the manager

overlap rate is used as a single sorting criterion, an adjustment for family size is important.

6.2 Full-Sample Results

We now test the predictions of our model. We use the Fama-MacBeth procedure to investi-

gate the cross-sectional patterns in investor responses to fund and family performance. Each

month, fund flows are regressed on Perf and FamPerf, fund and family characteristics, and

the interaction terms between these two sets of variables. The fund characteristics include:

expense ratio, Expense; fund size, Log(TNA); and fund age, Log(AGE ). The family char-

acteristics include: family size, Log(N ); manager overlap rate, denoted by Beta; and the

correlation of idiosyncratic returns in a family, Rho. Hypotheses H1-H4 are statements

about the signs of the coefficients on the interaction terms. We also include the square of

fund performance, Perf 2, as a regressor to account for the convexity of the flow-performance

relation that shows up in the drift of equation (31). Fund age and fund size are highly cor-

related, so we investigate their effects both separately and jointly. To account for potential

changes of investor preferences for different types of funds over time, fund flows are adjusted

by subtracting the contemporaneous mean of all funds in the same Lipper class. Further-

26We treat manager data as missing if manager names are unavailable from Morninstar. For the years
1999 to 2004, about 5% of the monthly observations of the manager name variable are recorded as “Team-
managed” in Morningstar. This ratio is lower than what is reported in Massa, Reuter, and Zitzewitz (2010),
as their sample also includes bond funds and international funds. From 2005 to 2011, this ratio decreases to
0.2%. This is because the SEC introduced a new rule in 2004, which requires funds to disclose the identities
of all team members. In contrast, CRSP records 18% of funds as “team-managed” for the first period, and
32% for the second.
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more, to aid the interpretation of the regression results, each fund and family characteristic

is adjusted by subtracting the contemporaneous sample mean. Therefore, for a fund whose

characteristics are equal to their contemporaneous means, the sensitivities of flows to fund

and family performance are simply given by the coefficients of Perf , Perf 2 and FamPerf .

There are altogether 120 monthly cross-sectional regressions for each model specification.

Table 3 reports the time series averages of the coefficients, and the t-statistics with Newey-

West correction for autocorrelation (with three lags). The first three columns report the

results using the three-factor model to estimate Perf, FamPerf, Rho, while last three columns

correspond to the four-factor model. The two sets of results are very similar, suggesting that

the results are robust to the asset pricing model chosen for performance measurement.

The estimated coefficients on Perf and Perf 2 are positive and highly significant. The

positive coefficient on Perf 2 confirms the well-documented convex relation between flows and

fund performance. The coefficient on family performance, FamPerf, is also positive, and

significant at the 1% level. It follows that, for a fund whose fund and family characteristics

are the mean levels, investors respond positively to family performance, i.e., the common-

skill effect dominates the correlated-noise effect. This is consistent with the positive spillover

found in Nanda, Wang, and Zheng (2004).

Hypothesis H1 receives mixed support from the data. Fund flows are less sensitive to fund

performance when the manager overlap rate (Beta) is high. The coefficient on Beta*Perf

is negative and statistically significant at the 1% level in each column, suggesting investors

rely less on an individual fund’s performance to learn about its composite skill, as our model

predicts. On the other hand, our prediction that the manager overlap rate increases the

sensitivity of fund flows to family performance does not receive support from the data, as

the coefficient on Beta*FamPerf is insignificant.

The predictions regarding the impacts of the idiosyncratic return correlation (H2) receive

strong support from the data. Fund flows are more sensitive to fund performance and less
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sensitive to family performance for families with highly correlated idiosyncratic returns. The

coefficient on Rho*Perf is positive and significant at the 1% level in each column, while

the coefficient on Rho*FamPerf is significantly negative in each column. The coefficient of

the interaction term suggests a strong negative impact of Rho on the sensitivity of fund

flows to family performance. Take model (6) as an example. The coefficients on FamPerf

and Rho*FamPerf are 0.754 and -1.290, respectively. These coefficients imply that other

things equal, as Rho increases from the sample mean by one standard deviation (0.177, as

reported in Table 2) , the sensitivity of fund flows to family performance decreases from

0.754 to 0.526 (= 0.754− 0.177 ∗ 1.290), a significant drop of 30%. This suggests that the

common-skill effect is significantly offset by the correlated-noise effect as the correlation of

idiosyncratic fund returns increases.

The predictions regarding the impacts family size (H3) are also strongly supported by the

data. Fund flows are less sensitive to fund performance and more sensitive to family perfor-

mance in families with many funds. The coefficients on Log(N )*Perf and Log(N )*FamPerf

are negative and positive, respectively, in each column of the table, and all are statistically

significant. These results support our model. The performance of a large family is a rela-

tively precise signal about the family skill, so it induces a strong response of fund flows. At

the same time, the response to fund performance is weaker.

Hypothesis H4 is also supported by the data. Fund flows are less sensitive to fund perfor-

mance as a fund grows older and larger. The coefficients on the interactions Log(TNA)*Perf

and Log(Age)*Perf are negative and highly significant when fund size and age enter the

regression separately. When they enter jointly, as in model (3) and (6), the negative age

effect drives out the significance of the size effect. This highlights the decline of uncertainty

about composite skills as fund grows older. The sensitivity of fund flows sensitivity to family

performance also declines with fund age and fund size, as Hypothesis H4 predicts. While

the age effect is only marginally significant in one out of four model, the negative impact of
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fund size on the flow sensitivity to family performance is significant in all models.

The coefficients on Log(TNA) and Log(Age) are negative when these variables enter the

regression separately, indicating that larger and older funds on average attract less inflows as

a percentage of their asset sizes, independent of their performance. This is consistent with

our model, in which the positive drift of fund size comes from the convex relation between

the estimated composite skill and the equilibrium size. As the uncertainty declines over time,

the drift becomes weaker.

We conduct a number of robustness checks. For example, we measure fund flows by asset

growth rate without adjusting for fund returns, and we use the multi-factor alpha instead

of the information ratio as the performance measure. We also use several different proxies

for the weight of the common component in the composite skill. For example, we use the

fraction of fund pairs managed by an identical manager or management team. We also use

the ratio of the number of management teams to the number of funds in the family as an

inverse proxy for β. Our results are similar in these alternative tests.

Overall, the full-sample results demonstrate that investors use both fund and family

performance when they allocate money across mutual funds, and that they do so in a manner

that is largely consistent with our model of rational learning. Each of the hypothesis H1-

H4 receives empirical support. The response of fund flows to fund performance is strongest

when funds are young and small, when the number of funds in the family is small, when

the manager overlap rate is low, and when the correlation of idiosyncratic returns is high.

The response to family performance is strongest when funds are small, when their family is

large, and when the correlation of idiosyncratic returns is low. One notable failure is that we

find no evidence that a high manager overlap rate within a family increases the sensitivity

of flows to family performance. Our results thus demonstrate both the usefulness and the

limitation of a model of rational learning to explain mutual fund flows.
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6.3 Subsample Analysis

Our model demonstrates that the cross-sensitivity of fund flows to family performance can

be either positive or negative, depending on family characteristics. Table 3 shows that this

cross-sensitivity is positive for a fund whose characteristics are at the mean levels. This

raises an interesting question: While a negative cross-sensitivity is theoretically possible, is

it empirically relevant? Extrapolations using the regression results in Table 3 suggest that a

negative cross-sensitivity can be obtained in families with certain characteristics. However,

such extrapolations do not tell us how prevalent such families are in the data.

To address this question, we apply the Fama-MacBeth procedure separately to two sub-

samples with opposite families characteristics. Sample 1 represents funds in families that are

likely to have a strong correlated-noise effect and a weak common-skill effect. According to

our model, these families have a low common skill component β, a high correlation of noise

ρ, and a small number of firms n. Therefore, we construct this sample by selecting all funds

with the following family characteristics: (1) a manager overlap rate that, after adjusting

for family size, is below the contemporaneous mean across all funds;27 (2) an idiosyncratic

return correlation that is above the contemporaneous mean across all funds; (3) a family

size (measured by the number of funds) that is below the contemporaneous mean across all

funds. Approximately 13% of fund-month observations satisfying these criteria. If investors

behave as our model predicts, we should find that fund flows respond negatively to family

performance in this sample. Furthermore, fund flows should respond more strongly to fund

performance in this sample than in the full sample.

In contrast, sample 2 represents funds that are likely to show a strong common-skill effect

and a weak correlated-noise effect. These are funds in families with above-average adjusted

manager overlap rate and family size, and below-average idiosyncratic return correlation.

27Since manager overlap rate is negatively related to the number of funds in the family, we first run
a regression of this rate on log(N) month by month at the family level, and use the residuals from this
regression to classify funds.
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Our model predicts that fund flows in sample 2 respond more strongly to family performance,

and less strongly to fund performance, in comparison to those in the full sample.

The results in Table 4 strongly confirm these predictions. Panels (A) and (B) report the

results from the three- and the four-factor models, respectively. The results are very similar

across panels, but each panel shows striking differences between the two subsamples. Most

interestingly, for sample 1, the fund flow sensitivity to family performance is negative in each

model of the two panels, significant at the 1% level in five out of six cases. Consider Panel

(A) as an example. The parsimonious specification of model (1) shows that unconditionally,

when the average information ratio of all other funds in a family increases by one unit,

flows to a member fund decease by 0.862%. Model (2) shows that for funds whose age is

at the cross-sectional mean level (i.e., log(Age)=0), this sensitivity is -0.638%. Model (3)

shows a cross-sensitivity of -1.055% for a fund whose size is at the mean level. These results

demonstrate the dominance of common-noise effect in sample 1, which confirms the empirical

relevance of a novel prediction of our model.

The sensitivity of flows to family performance in sample 2 is strongly positive, as our

model predicts. Its magnitude is two to three times as big as that observed in the full

sample. Furthermore, the flow sensitivities to fund performance in these two subsample also

behave as predicted. Compared to the full sample, the coefficient of Perf is about 20%

higher in sample 1 (comparing, for example, models (2) and (3) in Panel A with models (1)

and (2) in Table 3, respectively), and about 12% to 20% lower in sample 2.

The contrasting results from the two subsamples not only provide strong further support

to the cross-sectional predictions of our model, but also demonstrate the economic impor-

tance of both the common-skill and common-noise effects. Either one can be very strong

when the other counteracting effect is weak. In particular, the results from sample 1 show

that the dominance of the correlated-noise effect is not only theoretically possible, but also

empirically true for a sizable fraction of funds.
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7 Conclusion

The performance of a mutual fund depends on both the fund-specific characteristics and the

quality of the common resources of its family. Using family resources in the alpha-generating

process introduces a common component in member funds’ unobservable skills. It also

induces a positive correlation of noise in idiosyncratic fund returns within a family. These

observations suggest rich possibilities of cross-fund learning within a family. Building on this

idea, we develop a model that characterizes the optimal evaluation of a fund’s composite

skill based on its own performance and the family performance.

Our model highlights two potential impacts of one fund’s performance on the optimal

estimate of the composite skill of another fund in the family. When one fund performs well, it

indicates the quality of the common resource is high. This is good news about the composite

skill of another fund. We call this positive effect the “common-skill effect.” When a fund is

doing well, this also suggests that it may have had some good luck. Due to the correlation of

the noise in returns, we may also attribute a greater portion of another fund’s performance

to good luck. This is bad news about the composite skill of another fund. We call this

negative effect the “correlated-noise effect.” The overall effect of one fund’s performance on

the skill estimate of another fund depends then on the relative strength of these two opposite

effects. Our theoretical analysis pins down the key variables that determine the sensitivities

of beliefs about composite skills to both fund and family performance, including the number

of funds in the family, the importance of common skill in alpha generation, the correlation

of noise in fund returns, as well as fund size and fund age.

We empirically test the implication of optimal cross-fund learning for mutual fund flows,

and find strong support for our model. Good family performance on average has a positive

effect on fund flows to a member fund, suggesting the dominance of the common-skill effect.

Its has a stronger impact in larger families, and families with a lower correlation of idiosyn-
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cratic returns. Interestingly, for the subsample of funds whose families have a below-average

manager overlap rate, offer a below-average number of funds, and show an above-average

correlation of idiosyncratic returns, the response of fund flows to family performance is signif-

icantly negative. This suggests that the correlated-noise effect dominates the common-skill

effect in a sizable fraction of our sample. The sensitivity of flows to a fund’s own perfor-

mance decreases with fund age, family size, and the manager overlap rate across funds, but

increases with the correlation of idiosyncratic returns within families, as our model predicts.

We have focused on the Berk and Green (2004) equilibrium of the mutual fund industry

with no frictions in fund flows. As a result, there is no predictability in mutual fund returns.

Family performance relevant for the optimal updating of beliefs is immediately reflected in

fund flows. In practice, it is likely that transaction costs in reallocating money across funds

cause temporary deviations from such an equilibrium. Family performance is then useful in

predicting both fund returns and fund flows. This is a fruitful avenue for future research.

While our model is about the evaluation of mutual funds in a family setup, its basic insight

is relevant in many other situations in which the performance of multiple units depends

on both unobservable common fundamentals and noise correlated across the units. For

example, it may help to explain some puzzling empirical findings about CEO compensation

and turnovers. Empirical studies show that many components of executive compensation,

such as stock or stock options, depend on absolute performance rather than performance

relative to peers (Murphy (1999)). Recent studies also find that forced CEO turnovers are

negatively related to both peer-adjusted CEO performance and peer performance (Jenter

and Kanaan (2010)). These findings contradict the simple model of relative performance

evaluation. Accounting for both the common-skill and correlated-noise effects may lead to a

better understanding of these results. Other applications of our modeling framework include

the evaluation of mutual funds or hedge funds with the same investment style, stocks with

similar characteristics, or markets in the geographic region.
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A Appendix

A.1 Proof of Proposition 1

Equations (9)-(12) follow from Theorem 12.7 of Lipster and Shiryaev (2001), using (4) and

(8) as the state and observation equations, respectively.

For the analytic solution to the Ricatti equation (10) given in equation (13) for k = 0, we

consider two cases: (i) the unknown composite skills are constant, so that ΩΩ′ = 0n×n, and

(ii) the unknown composite skills follow a random walk, so that ΩΩ′ is a positive definite

matrix. In either case, in the long run, the covariance matrix of composite skills V∗ is

defined by the equation:

0n×n = ΩΩ′ −V
∗

(BB′)
−1

V∗. (A.1)

The solution to this equation can be written as

V∗ =

 0n×n, case (i),

BDΠ1/2D′B′, case (ii),
(A.2)

where D and Π are the n× n matrix of orthonormal eigenvectors and the diagonal matrix

of eigenvalues, respectively, of the symmetric, positive-definite matrix

DΠD′ = B−1ΩΩ′B
′−1
. (A.3)

A general solution to equation (10) is written

Vt = BPtB
′+V∗, (A.4)

where Pt is to be found. Substitution of (A.4) into equation (10) gives a homogeneous
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equation:

dPt

dt
=

 −PtPt, case (i),

−PtDΠ1/2D′−DΠ1/2D′Pt−PtPt, case (ii).
(A.5)

For case (i), it is easy to show that28

Pt = Q−1
t , (A.6)

where the matrix Qt satisfies dQt = In×n, and has the elements

Qij (t) =

 Qij (0) + t, i = j,

Qij (0) , i 6= j.
(A.7)

For case (ii), we define the matrix Qt by

Pt = DQ−1
t D′. (A.8)

Thus, equation (A.5) implies that Qt solves the linear equation

dQt

dt
= Π1/2Qt + QtΠ

1/2 + In×n. (A.9)

A solution to this equation has the individual elements

Qij (t) =

 e2
√
πitQij (0) + 1

2
√
πi

(
e2
√
πit − 1

)
, i = j,

e(
√
πi+
√
πj)tQij (0) , i 6= j.

(A.10)

In each case, the initial values Qij (0) are calculated as the solution to equation (A.4)

for a given V0. Diagonal elements Qii (t) −→
t→∞

∞, so Pij (t) −→
t→∞

0 for all i and j. Thus,

28Note that for any invertible Qt,
dQ−1

t

dt = −Q−1t
dQt

dt Q−1t .
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Vt −→
t→∞

V∗.

Given a solution Qt, equations (14), (A.4), (A.6), and (A.8) together specify the solution

for Vt in equation (10) in the text.

A.2 Proof of Proposition 2

To prove Proposition 2, we first derive the matrix (BB′)
−1
.

Lemma 1. For a homogeneous family with n ≥ 2 funds, the inverse of the correlation matrix,

(BB′)
−1

, has elements bn on the main diagonal, and elements bn off the main diagonal, where

bn =
1 + (n− 2) ρ

(1− ρ) (1 + (n− 1) ρ)
, (A.11)

bn = − ρ

(1− ρ) (1 + (n− 1) ρ)
. (A.12)

Proof of Lemma 1. In the homogeneous n−fund family, each pair of funds has correlation of

idiosyncratic returns equal to ρ. The correlation matrix is

BB′= (1− ρ) I+ρ11′.

where I is the n× n identity matrix and 1 is a n× 1 vector with elements 1. The proof is

complete when we show that BB′P = I, where

P =
(
bn − bn

)
I+bn11′,
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with bn and bn given by equations (A.11) and (A.12), respectively. We calculate

BB′P = [(1− ρ) I+ρ11′]
[(
bn − bn

)
I+bn11′

]
= (1− ρ)

(
bn − bn

)
I+ρ

(
bn − bn

)
11′ + (1− ρ) bn11′ + ρ11′bn11′

= I+
(
ρ
(
bn − bn

)
+ (1− ρ) bn + nρbn

)
11′.

A bit of algebra shows that the second term of the final line is zero.

Proof of Proposition 2. The matrix equation (A.1) in a homogeneous family is described

by two scalar equations that identify vn and v2
n. Each element of the main diagonal is the

equation

ω2 = v2
nbn + 2vnvnbn (n− 1) + v2

n (n− 1)
(
bn + bn (n− 2)

)
, (A.13)

where bn and bn are given by Lemma 1. Similarly, each off-diagonal element is the equation:

ω2λ = v2
nbn + 2vnvn

(
bn + bn (n− 2)

)
+ v2

n

(
bn (n− 2) + bn

(
n− 1 + (n− 2)2)) . (A.14)

To solve these equations, first substitute for bn and bn, using equations (A.11) and (A.12),

respectively. Then substitute for vn, using vn = φnvn, where φn is the correlation between the

composite skills of two funds in the homogeneous family conditional on investors’ information

set. Set equal the ratios of the left- and right-hand sides. After some algebra, a quadratic

equation identifying φn emerges:

0 = K1φ
2
n − 2K2φn +K3, (A.15)

with the coefficients

K1 = 1 + (n− 1) (λ+ ρ− 1) (A.16)

K2 = (n− 1) ρλ+ 1, (A.17)
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K3 = ρ+ λ+ λρ (n− 2) . (A.18)

For the case ρ = n−2
n−1
− λ, we find K1 = 0, φn = n−2

2(n−1)
, and

vn = ω
2

n

√
(1− ρ) (n− 1) ((n− 1)ρ+ 1), (A.19)

vn =
n− 2

2 (n− 1)
vn. (A.20)

For the case ρ 6= n−2
n−1
− λ, the discriminant of equation (A.15), K2

2 −K1K3, is positive and

the equation has two real roots. One root is

φn = ρ+Kρ
Kρ −Kλ

K1

(A.21)

where

Kτ =
√

(1− τ) ((n− 1) τ + 1), τ = ρ, λ. (A.22)

Numerical evaluation of the second root gives values |φn| > 1, which is inconsistent with

the definition of a correlation. With some algebra, we then find that the variance and

covariance in equations (17) and (18), respectively, solve equations (A.13) and (A.14), and

that vn = vnφn, where φn is given in equation (A.21). It is evident from equation (17) that

vn ≤ ω. When ρ = λ, equation (A.21) gives φn = ρ = λ, and equation (A.19) gives vn = ω.

When ρ 6= λ, equation (A.21) gives φn 6= ρ, and equation (A.19) gives vn < ω.

A.3 Proof of Corollary 1

(i) n = 2. First consider the case ρ 6= −λ. We substitute out Kρ, Kλ, K1 and K2 in

equations (17) and (18) using (A.22), (A.16) and (A.17). After some algebra, equation (17)

becomes (19), and (18) becomes (20). For the case ρ = −λ, equations (A.19) and (A.20)

yield v2 = ω
√

(1− ρ)(1 + ρ) and v̄2 = 0, which are consistent with equations (19) and (20).
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(ii) n → ∞. First consider the case ρ 6= n−2
n−1
− λ. We again substitute out Kρ, Kλ, K1

and K2 in equations (17) and (18) using (A.22), (A.16) and (A.17). We then evaluate the

limits of equations (17) and (18) as n → ∞. After some algebra, equation (17) becomes

(21), and (18) becomes (22). For the case ρ = n−2
n−1
− λ, equations (A.19) and (A.20) yield

v = 2ω
√

(1− ρ)ρ and v̄ = ω
√

(1− ρ)ρ, which are consistent with equations (21) and (22)

as ρ→ 1− λ.

A.4 Proof of Proposition 3

The matrix S∗ in the homogeneous family has on- and off-diagonal elements, sn and sn
n−1

,

respectively. Using S∗ = V∗ (BB′)
−1

and the solution for (BB′)
−1

in Lemma 1, we have

sn =

(
vn + (vn − vn)

(n− 1) ρ

1− ρ

)
1

1 + (n− 1) ρ
, (A.23)

sn =
vn − ρvn

1− ρ
n− 1

1 + (n− 1) ρ
. (A.24)

For the case defined by ρ = n−2
n−1
− λ, substitute for vn and vn using equations (A.19) and

(A.20). This gives

sn = vn
2 + (n− 2) ρ

2 (1− ρ) (1 + (n− 1) ρ)
, (A.25)

sn = vn
1

1− ρ

(
n− 2− 2 (n− 1) ρ

2(1 + (n− 1) ρ)

)
. (A.26)

Alternatively when ρ 6= n−2
n−1
−λ, substitute in equations (A.23) and (A.24) using vn = φnvn,

and use equations (A.21) and (A.22) to obtain:

sn = vn

(
1−

(
1− Kλ

Kρ

)
(n− 1) ρ

K1

)
,

sn = vn
n− 1

K1

(
1− Kλ

Kρ

)
.
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Finally, substitute for K1 using equation (A.16) to obtain equations (23) and (24).

A.5 Proof of Corollary 2

(i) n = 2. First consider the case ρ 6= −λ. Substitute out Kρ and Kλ in equations (23) and

(24) using equation (A.22), and substitute out v2 using (19). After some algebra, equation

(23) becomes (25), and (24) becomes (26). For the case ρ = −λ, first substitute out vn and

v̄n in equations (A.25) and (A.26) using (A.19) and (A.20). Equations (A.25) and (A.26)

then yield s2 = ω 1√
(1−ρ)(1+ρ)

, and s̄2 = ω −ρ√
(1−ρ)(1+ρ)

. These are equivalent to (25) and (26)

for ρ = −λ.

(ii) n → ∞. First consider the case ρ 6= n−2
n−1
− λ. Substitute out Kρ and Kλ in equations

(23) and (24) using equation (A.22), and substitute out vn using (17). Evaluate the limits

of equations (23) and (24) as n → ∞. Note that nonsingularity of BB′ requires ρ ≥ 0. If

ρ > 0, equations (27) and (28) are obtained by applying the L’Hopital’s rule. If ρ = 0, we

have

lim
n→∞

sn = ω
√

(1− λ), lim
n→∞

sn =

 0, λ = 0,

∞, λ 6= 0,

which are consistent with equations (27) and (28). For the case ρ = n−2
n−1
− λ, substitute

out vn and v̄n in equations (A.25) and (A.26) using (A.19) and (A.20). Taking the limit as

n→∞ yields s = ω
√
ρ√

1−ρ , and s̄ = ω 1−2ρ√
(1−ρ)ρ

. These results are equivalent to equations (27)

and (28) as ρ→ 1− λ.
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Figure 1: Long-run uncertainty about composite skills. This figure shows the long-run
conditional variance (vn) of a fund’s skill under investors’ information set. The solid line
represents a family with two funds, the dashed line represents a family of 10 funds, the dot-
dashed line represents a family of 30 funds, while the dotted line represents the limiting case
when the number of funds in a family goes to infinity.The horizontal axis is the correlation
of noise in fund returns. The other parameter values are: volatility of fund skill, ω=0.15;
volatility of family skill, ωF=0.10; weight of family skills in the composite skill, β = 0.5.
These parameter values imply that the instantaneous correlation between the true skills of
two funds is λ=0.31 (according to equation (7)).
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Figure 2: Ratio of cross-sensitivity to direct sensitivity. This figure shows the ratio s̄n
sn

as a function of β (Panel (a)), and as a function of ρ (Panel (b)). sn and s̄n are the sensitivities
of the conditional skill estimate to a fund’s own unexpected performance and the average
unexpected performance of other funds in the same family, respectively. The different curves
correspond to different family sizes (n=2, 10, 30 and∞, respectively). ω = 0.15 and ω = 0.10
in both panels, ρ = 0.2 in Panel (a), and β = 0.5 in Panel (b) (which implies λ = 0.31).
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Figure 3: Sensitivities of beliefs over time. The left and right panels show sensitivities
of the conditional skill estimate to fund and family performance, respectively. Panel (a) and
(b) illustrate the effects of the weight of family skill in the composite skill (β). Panel (c)
and (d) illustrate the effects of the correlation of noise in fund returns (ρ). Panel (e) and (f)
illustrate the effects of family size (n). All parameters are fixed at the base case level given
in Table 1, except for the one whose values are explicitly marked in each panel.
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Figure 4: Correlation of idiosyncratic returns: within vs. across families
Rho3 Within and Rho4 Within are average correlations of idiosyncratic returns within
families. They are calculated by averaging all pairwise correlations of idiosyncratic returns
between funds within the same family. Rho3 Across and Rho4 Across are average pairwise
correlations of idiosyncratic returns between 278 standalone funds. The idiosyncratic re-
turns are estimated either using the Fama-French three-factor model (for Rho3 Within and
Rho3 Across) or the Carhart four-factor model (for Rho4 Within and Rho4 Across). Both
idiosyncratic returns and correlations are estimated with rolling windows of 36 months.
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Table 1: Base case parameter values

This table summarizes the base case parameter values used in generating Figure 3.

n family size 10
ρ correlation of noise in fund returns 0.20
β weight of family skill in composite skill 0.5
ω volatility of fund skill 0.15
ωF volatility of family skill 0.10
vn,0 initial variance of composite skill 0.12
vn,0 initial covariance of composite skills 0.05
k mean-reversion rate of skills 0.05
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Table 2: Summary statistics

This table present summary statistics at the fund-month level. Our mutual fund sample
consists of 2459 domestic equity funds from 686 fund families during the period from January
1999 to December 2011. Total net asset (TNA), return, and expense ratio are aggregated
across all share classes of the same fund. Fund age is measured by the age of the oldest share
class. Fund flow is calculated as asset growth rate minus fund return. Alpha, idiosyncratic
volatility, and information ratio (=alpha divided by volatility of residuals) are estimated by
the Fama-French three-factor model and the Carhart four factor model using rolling windows
of 36 months. Correlation of idiosyncratic returns is the average pairwise correlation of the
factor model residuals within a family, estimated also using rolling windows of 36 months.
Manager overlap rate for a pair of funds is defined as the number of managers managing both
funds divided by the average number of managers across the two funds. For a fund family, it
is the average across all pairs of its member funds. Number of funds within family is the total
number of funds a family is offering simultaneously. Correlations, manager overlap rate, and
number of funds within family are estimated at the family level and then assigned to all
member funds. Variables estimated using rolling windows of 36 months are only calculated
after a fund has been affiliated with a given fund family for at least 36 months.

Variable Mean Std. Dev. N

TNA (million dollar) 1281.745 5348.13 279829

Fund age (year) 12.801 12.994 280043

Monthly return (%) 0.401 5.814 277749

Monthly fund flow (%) 0.278 4.295 271730

Annual expense ratio (%) 1.259 0.457 275370

Alpha (3-factor, %) -0.099 0.399 177012

Alpha (4-factor, %) -0.103 0.384 177012

Idiosyncratic volatility (3-factor, %) 0.015 0.009 177012

Idiosyncratic volatility (4-factor, %) 0.014 0.008 177012

Information ratio (3-factor) (Perf) -0.097 0.248 177012

Information ratio (4-factor) (Perf) -0.103 0.257 177012

Correlation of idiosyncratic returns (3-factor) (Rho) 0.188 0.187 184244

Correlation of idiosyncratic returns (4-factor) (Rho) 0.183 0.177 184244

Manager overlap rate (Beta proxy) 0.192 0.278 248054

Number of funds within family (N) 12.212 12.21 280043
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Table 3: Responses of fund flows to fund performance and family performance

This table shows the results of Fama-MacBeth regressions of monthly fund flows (in percentage)
on various explanatory variables. The coefficients are the time series averages of 120 cross-sectional
regressions from January 2002 to December 2011. Perf is a fund’s monthly alpha estimated over
the 36-month period ending at the end of the previous month, divided by the fund’s monthly id-
iosyncratic volatility estimated over the same period; Perf2 is the square of Perf ; FamPerf is
the average Perf of all other funds in the same family; Log(TNA), Log(Age), and Log(N) are
the natural logarithms of lagged total net asset value, fund age and number of funds in the family,
respectively; Expense is the lagged expense ratio (in percentage); Beta is the lagged average pair-
wise manager overlap rate within a family. Rho is the average pairwise correlation of idiosyncratic
returns estimated for each fund family over the 36-month period ending at the end of the previous
month. The model also includes ten interaction terms of fund and family performance with various
fund and family characteristics, including Beta, Rho, Log(AGE), Log(TNA), and Log(N). Beta,
Rho, Log(TNA), Log(Age), and Log(N), and Expense are adjusted by subtracting their contem-
poraneous sample means. The monthly fund flow is adjusted by subtracting the contemporaneous
mean of all funds in the same Lipper class. The first three columns report the results when Perf
and Rho are estimated from the three-factor model, while last three columns report results esti-
mated using the four-factor model. The t-statistics are Newey-West corrected (with three lags) for
autocorrelation in the estimated coefficients.
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three-factor model four-factor model
(1) (2) (3) (4) (5) (6)

Perf 4.069*** 4.253*** 4.042*** 3.893*** 4.028*** 3.855***
(14.67) (15.09) (14.69) (14.24) (14.99) (14.35)

Perf2 3.035*** 3.222*** 2.991*** 2.711*** 2.809*** 2.653***
(7.24) (7.37) (7.13) (7.20) (7.55) (7.27)

FamPerf 0.662*** 0.557*** 0.653*** 0.765*** 0.634*** 0.754***
(3.95) (3.24) (3.92) (4.47) (3.72) (4.50)

Beta ∗ Perf -1.542*** -1.567*** -1.554*** -1.387*** -1.392*** -1.384***
(-3.92) (-4.11) (-4.10) (-3.78) (-3.84) (-3.86)

Beta ∗ FamPerf -0.063 -0.314 -0.163 0.057 -0.210 -0.041
(-0.12) (-0.62) (-0.32) (0.12) (-0.46) (-0.09)

Rho ∗ Perf 3.158*** 3.206*** 3.160*** 3.205*** 3.270*** 3.193***
(8.39) (8.12) (8.48) (8.86) (8.81) (8.88)

Rho ∗ FamPerf -1.181** -1.164* -1.143* -1.336** -1.337** -1.290**
(-1.99) (-1.88) (-1.86) (-2.29) (-2.15) (-2.08)

Log(N) ∗ Perf -0.418*** -0.391*** -0.440*** -0.370*** -0.356*** -0.394***
(-6.51) (-5.20) (-5.60) (-6.24) (-5.56) (-5.68)

Log(N) ∗ FamPerf 0.602** 0.645** 0.739*** 0.624*** 0.610** 0.724***
(2.37) (2.40) (2.65) (2.73) (2.42) (2.78)

Log(Age) ∗ Perf -0.998*** -1.024*** -0.941*** -0.966***
(-8.05) (-8.15) (-8.62) (-8.14)

Log(Age) ∗ FamPerf -0.325 -0.130 -0.350* -0.189
(-1.43) (-0.49) (-1.70) (-0.79)

Log(TNA) ∗ Perf -0.129*** 0.033 -0.105*** 0.042
(-3.24) (0.81) (-3.10) (1.07)

Log(TNA) ∗ FamPerf -0.208*** -0.229*** -0.175** -0.187**
(-2.97) (-2.69) (-2.51) (-2.28)

Beta -0.180 -0.208 -0.181 -0.097 -0.131 -0.092
(-1.28) (-1.42) (-1.27) (-0.67) (-0.89) (-0.64)

Rho 0.224* 0.213* 0.233* 0.218* 0.227* 0.217*
(1.76) (1.72) (1.79) (1.77) (1.88) (1.76)

Log(N) -0.007 0.031 -0.011 -0.003 0.028 -0.011
(-0.27) (1.26) (-0.45) (-0.12) (1.11) (-0.46)

Log(Age) -0.587*** -0.589*** -0.586*** -0.595***
(-12.67) (-12.12) (-12.33) (-11.79)

Log(TNA) -0.099*** 0.003 -0.091*** 0.011
(-8.13) (0.24) (-6.75) (0.80)

Expense -0.578*** -0.559*** -0.564*** -0.539*** -0.518*** -0.520***
(-13.30) (-11.31) (-11.48) (-13.48) (-11.45) (-11.48)

Constant 0.295*** 0.302*** 0.294*** 0.327*** 0.329*** 0.325***
(5.68) (5.69) (5.74) (6.04) (6.05) (6.11)

Observations 152077 152077 152077 152077 152077 152077
R2 0.060 0.053 0.060 0.057 0.050 0.058

* p < 0.1, ** p < 0.05, *** p < 0.01
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Table 4: Mutual fund flow sensitivities: subsample analysis

This table shows mutual fund flow sensitivities to fund and family performance for two opposite
subsamples. Sample 1 consists of funds in families in which the common-noise effect is likely
to be dominant, i.e., families with below-average manager overlap rate (after accounting for the
number of funds in the family), above-average idiosyncratic return correlation, and below-average
number of funds. Sample 2 consists of funds in families in which the common-skill effect is
likely to be dominant, i.e., families with the opposite characteristics. The results are obtained
from Fama-MacBeth regressions of monthly fund flows (in percentage) on various explanatory
variables from January 2002 to December 2011. Perf is a fund’s monthly alpha estimated over
the 36-month period ending at the end of the previous month, divided by the fund’s monthly
idiosyncratic volatility estimated over the same period; Perf2 is the square of Perf ; FamPerf
is the average Perf of all other funds in the same family; Log(TNA), Log(Age), and Log(N) are
the natural logarithms of lagged total net asset value, fund age and number of funds in the family,
respectively; Expense is the lagged expense ratio (in percentage). Log(TNA), Log(Age), Log(N),
and Expense are adjusted by subtracting the contemporaneous means of the full sample. The
monthly fund flow is adjusted by subtracting the contemporaneous mean of all funds in the same
Lipper class. Panel A reports the results when Perf and Rho are estimated from the three-factor
model, while Panel B reports results estimated using the four-factor model. The t-statistics are
Newey-West corrected (with three lags) for autocorrelation in the estimated coefficients.

Panel A: Results from the three-factor model

Sample 1 Sample 2
(1) (2) (3) (4) (5) (6)

Perf 4.966*** 4.866*** 5.057*** 3.175*** 3.184*** 3.617***
(13.73) (14.29) (13.99) (10.29) (10.38) (10.15)

Perf2 3.208*** 3.346*** 3.758*** 1.631*** 1.813*** 2.240***
(3.70) (4.30) (3.91) (3.90) (4.24) (4.79)

FamPerf -0.862*** -0.638** -1.055*** 1.997*** 1.563*** 1.908***
(-3.14) (-2.33) (-3.31) (3.12) (2.83) (3.02)

Log(Age) ∗ Perf -1.259*** -0.694***
(-4.95) (-4.18)

Log(Age) ∗ FamPerf 0.363 -1.126*
(1.01) (-1.77)

Log(TNA) ∗ Perf 0.033 -0.249***
(0.27) (-3.24)

Log(TNA) ∗ FamPerf -0.612*** -0.710**
(-4.25) (-2.14)

Log(Age) -0.554*** -0.745***
(-9.21) (-8.08)

Log(TNA) -0.046** -0.153***
(-2.12) (-4.66)

Expense -0.456*** -0.323*** -0.785*** -0.827***
(-4.20) (-2.76) (-11.29) (-9.90)

Constant 0.228*** 0.249*** 0.245*** 0.503*** 0.337*** 0.482***
(3.39) (3.62) (3.48) (4.73) (3.39) (3.79)

Observations 20122 20089 20089 41008 40982 40982
R2 0.055 0.065 0.058 0.036 0.060 0.050

* p < 0.1, ** p < 0.05, *** p < 0.01
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Panel B: Results from the four-factor model

Sample 1 Sample 2
(1) (2) (3) (4) (5) (6)

Perf 4.807*** 4.734*** 4.882*** 3.148*** 3.142*** 3.533***
(12.08) (12.92) (12.41) (10.15) (10.04) (10.51)

Perf2 3.159*** 3.366*** 3.443*** 1.523*** 1.708*** 2.049***
(4.01) (4.69) (4.38) (3.44) (3.68) (4.36)

FamPerf -0.865*** -0.705*** -1.059*** 1.845*** 1.254** 1.390***
(-3.43) (-2.85) (-3.48) (3.11) (2.56) (2.65)

Log(Age) ∗ Perf -1.195*** -0.733***
(-4.12) (-4.65)

Log(Age) ∗ FamPerf 0.389 -1.376*
(1.10) (-1.89)

Log(TNA) ∗ Perf 0.100 -0.238***
(1.17) (-3.08)

Log(TNA) ∗ FamPerf -0.554*** -0.483
(-3.42) (-1.47)

Log(Age) -0.555*** -0.775***
(-8.71) (-7.07)

Log(TNA) -0.048** -0.126***
(-2.04) (-3.70)

Expense -0.481*** -0.367*** -0.751*** -0.780***
(-4.27) (-3.05) (-11.72) (-9.52)

Constant 0.291*** 0.305*** 0.302*** 0.505*** 0.346*** 0.464***
(4.33) (4.50) (4.50) (5.25) (4.06) (4.10)

Observations 20299 20266 20266 38751 38734 38734
R2 0.050 0.060 0.052 0.038 0.062 0.051

* p < 0.1, ** p < 0.05, *** p < 0.01
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